
4
th

 Mediterranean Conference on Embedded Computing MECO - 2015 Budva, Montenegro

High Performance Pipelined FPGA Implementation

of the SHA-3 Hash Algorithm

Lenos Ioannou, Harris E. Michail

Department of Electrical Engineering, Computer

Engineering and Informatics, Cyprus University of

Technology, Lemesos 3036, Cyprus

{lc.ioannou,harris.michail}@cut.ac.cy

Artemios G. Voyiatzis

SBA Research

Vienna, Austria

avoyiatzis@sba-research.org

Abstract—The SHA-3 cryptographic hash algorithm is

standardized in FIPS 202. We present a pipelined hardware

architecture supporting all the four SHA-3 modes of operation

and a high-performance implementation for FPGA devices that

can support both multi-block and multi-message processing.

Experimental results on different FPGA devices validate that the

proposed design achieves significant throughput improvements

compared to the available literature.

Keywords-SHA-3, hash algorithm, FPGA, pipeline, high

performance.

I. INTRODUCTION (HEADING 1)

Cryptographic hash functions are a fundamental building
block of modern network security protocols and infrastructures,
such as TLS, SSL, SET, IPSec, and PKI [1-4]. They are used
for data integrity verification and also, in their keyed versions,
as message authentication codes, for example in the case of the
Hash Message Authentication Code (HMAC) [5]. MD5, SHA-
1, and SHA-2 are three well-known cryptographic hash
functions that are widely used. Advances in cryptanalysis
raised concerns on the security level these algorithms offer and
will offer in the future. In response, the National Institute of
Standards and Technology (NIST) of the USA initiated a
worldwide competition for the SHA-3, a new cryptographic
hash function that could replace existing ones in case they are
broken [6]. In October 2012, the Keccak algorithm was
nominated as the SHA-3 and in May 2014 the final details and
modes of operation were published as a draft FIPS 202
(Federal Information Processing Standard) for comments [7].

Following the standardization process, it is expected that in
the next years the SHA-3 algorithm will be incorporated as an
optional or mandatory secure hash algorithm in new or revised
versions of network security protocols and standards. The ever-
increasing transmission rates of data networks calls for
hardware implementations of cryptographic primitives and
algorithms to meet the strict timing requirements. The plans to
fully adopt IPv6 contribute towards this direction. The IPv6
protocols mandate the use of the IPsec suite for protecting data
exchanges; encryption and hashing are the building blocks for
implementing the security protocols defined in IPsec.

In this paper, we present a novel, high-performance
pipelined implementation of the SHA-3 algorithm on FPGAs.

Specifically, we study the performance of one- and two-stage
pipeline designs that can handle both single- and multi-block
messages. The designs are implemented in Virtex FPGA
technologies and experimental results of frequency, area, and
throughput are reported. The proposed architecture achieves
enormous improvements in terms of throughput and
throughput/area factors compared to published literature and
can serve as a design guideline for the implementers of the
SHA-3 algorithm.

The rest of the paper is organized as follows. Section II
presents the SHA-3 algorithm and previous works on SHA-3
FPGA implementations. Section III describes our proposed
pipelined architecture. Section IV presents the experimental
results and draws comparisons with the previous
implementations. Finally, Section V provides the conclusions
of the paper.

II. THE SHA-3 ALGORITHM AND FPGA PERFORMANCE

The SHA-3 cryptographic hash algorithm departs from the
design of previous cryptographic primitives (SHA-2 and AES).
The SHA-3 algorithm does not use the Merkle-Damgård
construction, as is the case of MD5, SHA-1, and SHA-2 but
rather uses the so-called “sponge construction”. The algorithm
initially absorbs input bits into its hash state and then an output
of equal length is squeezed out of it. The hash state has length

of 1,600 bits and can be considered as a 5𝑥5𝑥2ℓ, where ℓ = 6.
An SHA-3 round consists of 24 iterations of five sub-rounds.
The sub-rounds are denoted with Greek letters θ, ρ, π, χ, and ι
and consist of simple operations, like column parity
computation, bitwise rotate operation, word permutation,
bitwise row combination, and bitwise exclusive-OR operation
with per-round constants.

The FIPS standard defines six functions for the SHA-3
family. Four are cryptographic hash functions called SHA3-
224, SHA3-256, SHA-384, and SHA3-512; two are
extendable-output functions (XOFs), called SHAKE128 and
SHAKE256 [7].

The SHA-3 algorithm was designed to be fast in hardware.
In fact, the Keccak algorithm was the second fastest of the 14
algorithms that advanced to the second round of the
competition and the fastest of the finalists [8].

A.G. Voyiatzis was supported by COMET K1, FFG - Austrian Research

Promotion Agency and EU FP7 COST Action IC1403 CRYPTACUS.

– 68 –

4
th

 Mediterranean Conference on Embedded Computing MECO - 2015 Budva, Montenegro

During the competition period, many researchers designed
and implemented the then-Keccak algorithm in FPGA
technologies [9-20]. Their implementation results in terms of
area and throughput are varying for more than two orders of
magnitude. For example, 188 slices and 0.077 Gbps are
reported in [10], while 1,207 slices and 12.98 Gbps for the
same (Virtex-6) FPGA family are reported in [18].

A more recent work reports throughput closer to 20 Gbps
using a two-stage internal pipeline [21]. In that work, the
pipeline is laying within the sub-rounds hence the name
“internal”. However, we note that the reported throughputs are
unrealistic, since the authors assume that the internal pipeline
can be fed with the next blocks of the same message. This
assumption does not hold in the case of multi-block messages
because the final output of each block computation must be
already available as to start the computations of the next block.
Thus, it is more realistic to consider that the attainable
throughput is closer to 10 Gbps and the throughput/area ratio is
closer to 5-6 Mbps/slice in the case of multi-block messages.
This is because the two stages of the pipeline can be fully
exploited only in the (rare) case of single-block messages.

III. PROPOSED ARCHITECTURE

We describe in the following an architecture that is capable
of handling multi-block messages and of processing of multiple
messages. Our architecture supports all the four standardized
SHA-3 modes of operation. A high-level dataflow diagram is
depicted in Fig. 1. The SHA-3 core functionality is contained
in the five sub-round blocks θ, ρ, π, χ, and ι. These blocks
realize the sub-round transformations of the state matrix 𝛼 that
has a size of 1,600 bits. A control logic with a 5-bit counter
drives the 24 repetitions required for a complete SHA-3 round
and the use of the appropriate 64-bit constants at each round. A
2-to-1 multiplexer selects as input the result of the previous
round (if the counter is greater than 0) or the next input block
of 1,600 bits. The result of each repetition is stored in a register
and upon completion, the “byte inverse” and “truncate”
operations take place for producing the final 512-bit hash
value.

The architecture utilizes a software scheduler performing
three functions. The first is to prepare the input by splitting and
padding long messages into blocks of 1,600 bits (multi-block
messages). The second is to truncate, if necessary, the 512-bit
output of the hash computation in the appropriate size of the
selected mode of operation: 224, 256, 384, or 512 bits for the
SHA3-224, SHA3-256, SHA3-384, or SHA3-512 respectively.
Finally, the third is to update the state matrix 𝛼 in the case of
multi-block messages.

The critical path of our architecture is located inside the
round transformation, passing through the multiplexer and the
five sub-round blocks. It consists of a multiplexer; three XOR
units and a cyclic left shift block at the θ sub-round block; a
cyclic left shift block at the combined ρ and π sub-round
blocks; a XOR unit at the χ sub-round block; and a XOR unit at
the ι sub-round block. Since the critical path lies within the
round computation, the delay of the software scheduler is

accommodated. This design choice is justified since it reduces
the overall design's complexity and it does not affect its
security level [22].

Figure 1. SHA-3 block-level architecture.

The approach described above can be easily extended into a
pipelined design. Here, we analyze the case of a two-stage
pipeline, as depicted in Fig. 2. The output register of the first
stage is used to feed the input of the second stage and two 4-bit
counters are now used. The design allows outputting a first
block after 24 cycles and produces a new block every 12
cycles. This holds under the assumption that the software
scheduler handles multiple messages for hashing, as in the case
of a network card servicing multiple secure streams of packets
that require hashing. In this sense, it is an external pipeline: all
the five sub-rounds are used at each pipeline stage.

The proposed architecture can fully occupy the pipeline. To
see this, assume there are two or more messages of one or more

blocks are available and denote with 𝑀𝑖
𝑗
the 𝑗-th block of the 𝑖-

th message. During the first 12 cycles, 𝑀1
1 passes through the

first stage of the pipeline and the second stage remains empty.
During the next 12 cycles, 𝑀1

1 passes through the second stage

– 69 –

4
th

 Mediterranean Conference on Embedded Computing MECO - 2015 Budva, Montenegro

Figure 2. SHA-3two-stage pipeline architecture.

of the pipeline and 𝑀2
1 passes through the first stage. During

the next cycles, the next blocks 𝑀1
2,𝑀2

2, … are fed and advance
through the pipeline stages. If no more blocks are available,
then the first block of the next message, 𝑀3

1 is fed and the
process continues as before. Experimental Results and
Discussion

The proposed pipelined architecture was captured in VHDL
using the Xilinx ISE Design Suite. Three FPGA boards were
used, namely Virtex-4 XC4VLX200, Virtex-5 XC5VLX330T,
and Virtex-6 XC6VLX760.

Table I summarizes the performance of one- and two-stage
pipelined implementation of the SHA-3 on the three boards and
in terms of frequency, area, throughput, and throughput/area
ratio. The throughput is calculated as 𝑇 = (#𝑏𝑖𝑡𝑠 𝑥 𝑓)/
#𝑐𝑦𝑐𝑙𝑒𝑠, where #𝑏𝑖𝑡𝑠 refer to the number of the processed
bits, #𝑐𝑦𝑐𝑙𝑒𝑠 corresponds to the required clock cycles between
successive messages to generate each message digest, and 𝑓 is
the operating frequency of the design. The reported
throughputs are for the SHA3-512 mode, in alignment with the
available literature.

While the area does increase significantly (but it is not
doubled), the attained throughput is almost the double in all
cases. Furthermore, in the case of the Virtex-5, the
throughput/area is also increased. In Fig. 3, we summarize and
compare the raw throughput measures reported in the literature.
Our two-stage pipelined implementation outperforms by more
than 30% any published results for the case of Virtex-5 and
Virtex-6. In Fig. 4, we summarize and compare the throughput
per area ratios reported in the literature. Our two-stage
pipelined implementation is second best in Virtex-5 technology
and it is by far the best for the case of Virtex-6.

TABLE I. EXPERIMENTAL RESULTS

Pipeline

stages

Frequency

(MHz)

Area

(slices)

Throughput

(Gbps)

Throughput/area

(Mbps/slice)

Virtex-4 XC4VLX200

1 273 2,365 6.552 2.770

2 269 5,494 12.912 2.350

Virtex-5 XC5VLX330T

1 382 1,581 9.168 5.799

2 352 2,652 16.896 6.371

Virtex-6 XC6VLX760

1 412 1,115 9.888 8.868

2 391 2,296 18.768 8.174

IV. CONCLUSIONS AND FUTURE WORK

A novel two-staged pipelined architecture for the SHA-3
cryptographic hash algorithm is proposed in this paper. The
novelty of the architecture lies in the fact that it can efficiently
serve multiple multi-block messages. The design exploits a
software scheduler for offloading message splitting and
padding, reducing circuit complexity, and increasing
performance. The design can be considered as an external,
round pipeline that can saturate the two stages of the pipeline.
This is a common case in protecting packets of different
network streams. The presented implementations in three
Virtex families outperform in throughput by at least 30% any
published results.

As a future work and based on the promising results, we
aim to further explore the design space of deeper pipelines.

– 70 –

4
th

 Mediterranean Conference on Embedded Computing MECO - 2015 Budva, Montenegro

Furthermore, to study design trade-offs for area-throughput
optimizations and further improve the per-round performance.

Figure 3. SHA-3 throughput on V5 and V6 (our and [9]–[21]).

Figure 4. SHA-3 throughput/area on V5 and V6 (our and [9]-[21]).

REFERENCES

[1] S. Thomas, SSL & TLS Essentials: Securing the Web. John Wiley and
Sons Publications, 2000.

[2] L. Loeb, Secure Electronic Transactions: Introduction and Technical
Reference. Artech House Publishers, 1998.

[3] P. Loshin, IPv6: Theory, Protocol and Practice. Elsevier Publications:
USA, 2004.

[4] “SP 800-32, Introduction to public key technology and the federal PKI
infrastructure,” 2001, NIST Publication, US Dept. of Commerce.

[5] “FIPS 198, the keyed-hash message authentication code (HMAC)
federal information processing standard,” 2002, NIST Publication, US
Dept. of Commerce.

[6] NIST, “Cryptographic hash algorithm competition - SHA-3,” 2010,
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

[7] “Draft FIPS 202, SHA-3 standard: Permutation-based hash and
extendable-output functions,” May 2014, NIST Publication, US Dept. of

Commerce, http://csrc.nist.gov/publications/drafts/fips-202/fips 202
draft.pdf.

[8] X. Guo, S. Huang, L. Nazh, and P. Schaumont, “Fair and comprehensive
performance evaluation of 14 second round SHA-3 ASIC
implementations,” NIST 2nd SHA-3 Candidate Conference, 2010,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/.

[9] B. Jungk, “Evaluation of compact FPGA implementations for all SHA-3
finalists,” NIST 3rd SHA-3 Candidate Conference, 2012,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012.

[10] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M. de
Dormale, and F.-X. Standaert, “Compact FPGA implementations of the
five SHA-3 finalists,” in Smart Card Research and Advanced
Applications. Springer, 2011, pp. 217–233.

[11] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W. P. Marnane, “FPGA implementations of the round two SHA-3
candidates,” in Field Programmable Logic and Applications (FPL), 2010
International Conference on. IEEE, 2010, pp. 400–407.

[12] Y. Jararweh, L. Tawalbeh, H. Tawalbeh, and A. Moh’d, “Hardware
performance evaluation of SHA-3 candidate algorithms,” Journal of
Information Security, vol. 3, p. 69, 2012.

[13] A. Gholipour and S. Mirzakuchaki, “High-speed implementation of the
Keccak hash function on FPGA,” International Journal of Advanced
Computer Science, vol. 2, no. 8, 2012.

[14] I. San and N. At, “Compact Keccak hardware architecture for data
integrity and authentication on FPGAs,” Information Security Journal: A
Global Perspective, vol. 21, no. 5, pp. 231–242, 2012.

[15] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, and S.
Gurung, “Lightweight implementations of SHA-3 finalists on FPGAs,”
NIST 3rd SHA-3 Candidate Conference, 2012,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012.

[16] G. Provelengios, P. Kitsos, N. Sklavos, and C. Koulamas, “FPGA-based
design approaches of Keccak hash function,” in Digital System Design
(DSD), 2012 15th Euromicro Conference on. IEEE, 2012, pp. 648–653.

[17] J. Str ̈ombergson, “Implementation of the Keccak hash function in
FPGA devices,” 2008 http://www.strombergson.com/files/Keccak in
FPGAs.pdf.

[18] E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing hardware
performance of round 3 SHA-3 candidates using multiple hardware
architectures in Xilinx and Altera FPGAs,” Ecrypt II Hash Workshop
2011, 2011, http://www.ecrypt.eu.org/hash2011/proceedings/hash2011
07.pdf.

[19] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif,
“Comprehensive evaluation of high-speed and medium-speed
implementations of five SHA-3 finalists using Xilinx and Altera
FPGAs,” Cryptology ePrint Archive, Report 2012/368, 2012,
http://eprint.iacr.org/.

[20] K. Kobayashi, J. Ikegami, M. Knezevic, E. X. Guo, S. Matsuo, S.
Huang, L. Nazhandali, U. Kocabas, J. Fan, A. Satoh et al., “Prototyping
platform for performance evaluation of SHA-3 candidates,” in
Hardware-Oriented Security and Trust (HOST), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 60–63.

[21] G. Athanasiou, G.-P. Makkas, and G. Theodoridis, “High throughput
pipelined FPGA implementation of the new SHA-3 cryptographic hash
algorithm,” in Communications, Control and Signal Processing
(ISCCSP), 2014 6th International Symposium on, May 2014, pp. 538-
541.

[22] H. E. Michail, G. S. Athanasiou, V. Kelefouras, G. Theodoridis, and C.
E. Goutis, “On the exploitation of a high-throughput SHA-256 FPGA
design for HMAC,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol. 5, no. 1, p. 2, 2012.

– 71 –

	Button1:

