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Abstract—The SHA-3 cryptographic hash algorithm is 

standardized in FIPS 202. We present a pipelined hardware 

architecture supporting all the four SHA-3 modes of operation 

and a high-performance implementation for FPGA devices that 

can support both multi-block and multi-message processing. 

Experimental results on different FPGA devices validate that the 

proposed design achieves significant throughput improvements 

compared to the available literature. 
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I.  INTRODUCTION (HEADING 1) 

Cryptographic hash functions are a fundamental building 
block of modern network security protocols and infrastructures, 
such as TLS, SSL, SET, IPSec, and PKI [1-4]. They are used 
for data integrity verification and also, in their keyed versions, 
as message authentication codes, for example in the case of the 
Hash Message Authentication Code (HMAC) [5]. MD5, SHA-
1, and SHA-2 are three well-known cryptographic hash 
functions that are widely used. Advances in cryptanalysis 
raised concerns on the security level these algorithms offer and 
will offer in the future. In response, the National Institute of 
Standards and Technology (NIST) of the USA initiated a 
worldwide competition for the SHA-3, a new cryptographic 
hash function that could replace existing ones in case they are 
broken [6]. In October 2012, the Keccak algorithm was 
nominated as the SHA-3 and in May 2014 the final details and 
modes of operation were published as a draft FIPS 202 
(Federal Information Processing Standard) for comments [7]. 

Following the standardization process, it is expected that in 
the next years the SHA-3 algorithm will be incorporated as an 
optional or mandatory secure hash algorithm in new or revised 
versions of network security protocols and standards. The ever-
increasing transmission rates of data networks calls for 
hardware implementations of cryptographic primitives and 
algorithms to meet the strict timing requirements. The plans to 
fully adopt IPv6 contribute towards this direction. The IPv6 
protocols mandate the use of the IPsec suite for protecting data 
exchanges; encryption and hashing are the building blocks for 
implementing the security protocols defined in IPsec. 

In this paper, we present a novel, high-performance 
pipelined implementation of the SHA-3 algorithm on FPGAs. 

Specifically, we study the performance of one- and two-stage 
pipeline designs that can handle both single- and multi-block 
messages. The designs are implemented in Virtex FPGA 
technologies and experimental results of frequency, area, and 
throughput are reported. The proposed architecture achieves 
enormous improvements in terms of throughput and 
throughput/area factors compared to published literature and 
can serve as a design guideline for the implementers of the 
SHA-3 algorithm. 

The rest of the paper is organized as follows. Section II 
presents the SHA-3 algorithm and previous works on SHA-3 
FPGA implementations. Section III describes our proposed 
pipelined architecture. Section IV presents the experimental 
results and draws comparisons with the previous 
implementations. Finally, Section V provides the conclusions 
of the paper. 

II. THE SHA-3 ALGORITHM AND FPGA PERFORMANCE 

The SHA-3 cryptographic hash algorithm departs from the 
design of previous cryptographic primitives (SHA-2 and AES). 
The SHA-3 algorithm does not use the Merkle-Damgård 
construction, as is the case of MD5, SHA-1, and SHA-2 but 
rather uses the so-called “sponge construction”. The algorithm 
initially absorbs input bits into its hash state and then an output 
of equal length is squeezed out of it. The hash state has length 

of 1,600 bits and can be considered as a 5𝑥5𝑥2ℓ, where ℓ = 6. 
An SHA-3 round consists of 24 iterations of five sub-rounds. 
The sub-rounds are denoted with Greek letters θ, ρ, π, χ, and ι 
and consist of simple operations, like column parity 
computation, bitwise rotate operation, word permutation, 
bitwise row combination, and bitwise exclusive-OR operation 
with per-round constants. 

The FIPS standard defines six functions for the SHA-3 
family. Four are cryptographic hash functions called SHA3-
224, SHA3-256, SHA-384, and SHA3-512; two are 
extendable-output functions (XOFs), called SHAKE128 and 
SHAKE256 [7]. 

The SHA-3 algorithm was designed to be fast in hardware. 
In fact, the Keccak algorithm was the second fastest of the 14 
algorithms that advanced to the second round of the 
competition and the fastest of the finalists [8]. 
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During the competition period, many researchers designed 
and implemented the then-Keccak algorithm in FPGA 
technologies [9-20]. Their implementation results in terms of 
area and throughput are varying for more than two orders of 
magnitude. For example, 188 slices and 0.077 Gbps are 
reported in [10], while 1,207 slices and 12.98 Gbps for the 
same (Virtex-6) FPGA family are reported in [18]. 

A more recent work reports throughput closer to 20 Gbps 
using a two-stage internal pipeline [21]. In that work, the 
pipeline is laying within the sub-rounds hence the name 
“internal”. However, we note that the reported throughputs are 
unrealistic, since the authors assume that the internal pipeline 
can be fed with the next blocks of the same message. This 
assumption does not hold in the case of multi-block messages 
because the final output of each block computation must be 
already available as to start the computations of the next block. 
Thus, it is more realistic to consider that the attainable 
throughput is closer to 10 Gbps and the throughput/area ratio is 
closer to 5-6 Mbps/slice in the case of multi-block messages. 
This is because the two stages of the pipeline can be fully 
exploited only in the (rare) case of single-block messages. 

III. PROPOSED ARCHITECTURE 

We describe in the following an architecture that is capable 
of handling multi-block messages and of processing of multiple 
messages. Our architecture supports all the four standardized 
SHA-3 modes of operation. A high-level dataflow diagram is 
depicted in Fig. 1. The SHA-3 core functionality is contained 
in the five sub-round blocks θ, ρ, π, χ, and ι. These blocks 
realize the sub-round transformations of the state matrix 𝛼 that 
has a size of 1,600 bits. A control logic with a 5-bit counter 
drives the 24 repetitions required for a complete SHA-3 round 
and the use of the appropriate 64-bit constants at each round. A 
2-to-1 multiplexer selects as input the result of the previous 
round (if the counter is greater than 0) or the next input block 
of 1,600 bits. The result of each repetition is stored in a register 
and upon completion, the “byte inverse” and “truncate” 
operations take place for producing the final 512-bit hash 
value. 

The architecture utilizes a software scheduler performing 
three functions. The first is to prepare the input by splitting and 
padding long messages into blocks of 1,600 bits (multi-block 
messages). The second is to truncate, if necessary, the 512-bit 
output of the hash computation in the appropriate size of the 
selected mode of operation: 224, 256, 384, or 512 bits for the 
SHA3-224, SHA3-256, SHA3-384, or SHA3-512 respectively. 
Finally, the third is to update the state matrix 𝛼 in the case of 
multi-block messages. 

The critical path of our architecture is located inside the 
round transformation, passing through the multiplexer and the 
five sub-round blocks. It consists of a multiplexer; three XOR 
units and a cyclic left shift block at the θ sub-round block; a 
cyclic left shift block at the combined ρ and π sub-round 
blocks; a XOR unit at the χ sub-round block; and a XOR unit at 
the ι sub-round block. Since the critical path lies within the 
round computation, the delay of the software scheduler is 

accommodated. This design choice is justified since it reduces 
the overall design's complexity and it does not affect its 
security level [22]. 

 

Figure 1. SHA-3 block-level architecture. 

The approach described above can be easily extended into a 
pipelined design. Here, we analyze the case of a two-stage 
pipeline, as depicted in Fig. 2. The output register of the first 
stage is used to feed the input of the second stage and two 4-bit 
counters are now used. The design allows outputting a first 
block after 24 cycles and produces a new block every 12 
cycles. This holds under the assumption that the software 
scheduler handles multiple messages for hashing, as in the case 
of a network card servicing multiple secure streams of packets 
that require hashing. In this sense, it is an external pipeline: all 
the five sub-rounds are used at each pipeline stage. 

The proposed architecture can fully occupy the pipeline. To 
see this, assume there are two or more messages of one or more 

blocks are available and denote with 𝑀𝑖
𝑗
the 𝑗-th block of the 𝑖-

th message. During the first 12 cycles, 𝑀1
1 passes through the 

first stage of the pipeline and the second stage remains empty. 
During the next 12 cycles, 𝑀1

1 passes through the second stage  
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Figure 2. SHA-3two-stage pipeline architecture. 

of the pipeline and 𝑀2
1 passes through the first stage. During 

the next cycles, the next blocks 𝑀1
2,𝑀2

2, … are fed and advance 
through the pipeline stages. If no more blocks are available, 
then the first block of the next message, 𝑀3

1 is fed and the 
process continues as before. Experimental Results and 
Discussion 

The proposed pipelined architecture was captured in VHDL 
using the Xilinx ISE Design Suite. Three FPGA boards were 
used, namely Virtex-4 XC4VLX200, Virtex-5 XC5VLX330T, 
and Virtex-6 XC6VLX760. 

Table I summarizes the performance of one- and two-stage 
pipelined implementation of the SHA-3 on the three boards and 
in terms of frequency, area, throughput, and throughput/area 
ratio. The throughput is calculated as 𝑇 = (#𝑏𝑖𝑡𝑠 𝑥 𝑓)/
#𝑐𝑦𝑐𝑙𝑒𝑠, where #𝑏𝑖𝑡𝑠 refer to the number of the processed 
bits, #𝑐𝑦𝑐𝑙𝑒𝑠 corresponds to the required clock cycles between 
successive messages to generate each message digest, and 𝑓 is 
the operating frequency of the design. The reported 
throughputs are for the SHA3-512 mode, in alignment with the 
available literature. 

While the area does increase significantly (but it is not 
doubled), the attained throughput is almost the double in all 
cases. Furthermore, in the case of the Virtex-5, the 
throughput/area is also increased. In Fig. 3, we summarize and 
compare the raw throughput measures reported in the literature. 
Our two-stage pipelined implementation outperforms by more 
than 30% any published results for the case of Virtex-5 and 
Virtex-6. In Fig. 4, we summarize and compare the throughput 
per area ratios reported in the literature. Our two-stage 
pipelined implementation is second best in Virtex-5 technology 
and it is by far the best for the case of Virtex-6. 

TABLE I.  EXPERIMENTAL RESULTS 

Pipeline 

stages 

Frequency 

(MHz) 

Area 

(slices) 

Throughput 

(Gbps) 

Throughput/area 

(Mbps/slice) 

Virtex-4 XC4VLX200 

1 273 2,365 6.552 2.770 

2 269 5,494 12.912 2.350 

Virtex-5 XC5VLX330T 

1 382 1,581 9.168 5.799 

2 352 2,652 16.896 6.371 

Virtex-6 XC6VLX760 

1 412 1,115 9.888 8.868 

2 391 2,296 18.768 8.174 

IV. CONCLUSIONS AND FUTURE WORK 

A novel two-staged pipelined architecture for the SHA-3 
cryptographic hash algorithm is proposed in this paper. The 
novelty of the architecture lies in the fact that it can efficiently 
serve multiple multi-block messages. The design exploits a 
software scheduler for offloading message splitting and 
padding, reducing circuit complexity, and increasing 
performance. The design can be considered as an external, 
round pipeline that can saturate the two stages of the pipeline. 
This is a common case in protecting packets of different 
network streams. The presented implementations in three 
Virtex families outperform in throughput by at least 30% any 
published results. 

As a future work and based on the promising results, we 
aim to further explore the design space of deeper pipelines. 
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Furthermore, to study design trade-offs for area-throughput 
optimizations and further improve the per-round performance. 

 

Figure 3. SHA-3 throughput on V5 and V6 (our and [9]–[21]). 

 
Figure 4. SHA-3 throughput/area on V5 and V6 (our and [9]-[21]). 
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