
80 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

COMPUTING EDUCATIONCYBERTRUST

Many software security vulnerabilities result
from the exploitation of ordinary coding
� aws, rather than design or con� guration
errors. One study found that 64 percent of

vulnerabilities are the result of such common bugs as
missing or incorrect parameter checking, which leaves
applications open to common vulnerabilities including
bu� er over� ows or SQL injection.1 Although this statistic
might be discouraging, it also means that better function-
ality testing can also signi� cantly improve security.

SECURITY TESTING
Testing that can reveal complex faults that occur only un-
der rare conditions could be especially e� ective. Empirical
data show that most failures are triggered by a single para-
meter value, or interactions between a small number of
parameters (generally two to six)—a relationship known

as the interaction rule.2 An example
of a single-value fault might be a
bu� er over� ow that occurs when the
length of an input string exceeds a
particular limit. Only a single condi-
tion must be true to trigger the fault:
input length > bu� er size. A two-way
fault is more complex, because two
particular input values are needed
to trigger the fault. One example is
a search/replace function that only

fails if both the search string and the replacement string
are single characters. If one of the strings is longer than
one character, the code doesn’t fail; thus we refer to this
as a two-way fault. More generally, a t-way fault involves t
such conditions.

Figure 1 plots the cumulative percentage of faults at
t = 1–6 for various software applications studied by the Na-
tional Institute of Standards and Technology (NIST) and
others.3–6 As shown, the fault detection rate increases
rapidly with interaction strength, up to t = 4, reaching
100 percent detection with four- to six-way interactions.
Thus, the impossibility of exhaustive testing of all possi-
ble inputs isn’t a barrier to high-assurance testing. That is,
although we can’t test all possible combinations of input
values, failures involving more than six variables are ex-
tremely unlikely because they haven’t been seen in prac-
tice, so testing all possible combinations provides very

Combinatorial
Methods in
Security Testing
Dimitris E. Simos, SBA Research

Rick Kuhn, National Institute of Standards and Technology

Artemios G. Voyiatzis, SBA Research

Raghu Kacker, National Institute of Standards and Technology

Combinatorial methods can make software

security testing much more effi cient and

effective than conventional approaches.

O C T O B E R 2 0 1 6 81

EDITOR ANN E.K. SOBEL
Miami University; sobelae@muohio.edu

EDITOR JEFFREY VOAS
National Institute of Standards and Technology;

j.voas@ieee.org

little bene� t beyond testing four- to
six-way combinations.

The e� ectiveness of any software
testing technique depends on whether
test settings corresponding to the ac-
tual faults are included in the test sets.
When such settings aren’t included, the
faults won’t be detected. Conversely,
we can be con� dent that the software
works correctly for t-way combinations
contained in passing tests. For security
evaluations, it isn’t enough that fail-
ures are unlikely to occur in ordinary
usage, because attackers seek out even
complex � aws. Testing only to verify
requirements coverage is insu� cient
for security, or even for assuring criti-
cal functionality.

Matrices known as covering arrays
(CAs) can be computed to cover all
t-way combinations of variable values,
up to a speci� ed level of t (typically
t ≤ 6), making it possible to e� ciently
test all such t-way interactions.7 But
any test set, whether constructed as a
covering array or not, contains a large
number of combinations. We can mea-
sure this combinatorial coverage—
the coverage of t-way combinations
in a test set—to better understand
test set quality. These measurements
contribute quantitative input for risk
analysis, helping to answer questions
such as: How many di� erent scenarios
have been checked? Are the untested
scenarios important? How signi� cant
is the risk if we don’t increase the test
coverage? Does market share or other
external forces (for example, confor-
mance with standards) justify increas-
ing the test coverage?

COMBINATORIAL
SECURITY TESTING
SBA Research and NIST have devel-
oped a research program that aims to
bridge the gap between combinato-
rial testing (CT) and security testing
and, in the process, establish a new
research � eld: combinatorial security

testing. Several case studies illustrate
our experiences thus far.

Parsing untrusted Web content
The World Wide Web Consortium
(W3C) tidy service (http://services.w3
.org/tidy/tidy) is designed to detect
and correct HTML code. It accepts a
URL through a Web form, then parses
its HTML source code and reports any
� xes that should be made. The service
has been online for many years now,
being exposed to multiple instances of
malformed code.

In coordination with the W3C,
SBA Research performed an external
Web application penetration test.8

We � rst created an input parameter
model (IPM) of the Document Object
Model (DOM) and generated an at-
tack grammar. The resulting IPM was
an enhancement of our previous CT-
based approaches for Web security
testing.9–11 We then used the NIST
Automated Combinatorial Testing for
Software (ACTS) tool to produce test
cases that ensured 100 percent cover-
age of the DOM’s two- and three-way

parameter interactions, as recent
studies demonstrated its e� ectiveness
for Web security testing.12 We tested
the online service against the gener-
ated test suite using a prototype cross-
site scripting (XSS) injection tool and
succeeded in discovering a previously
unknown remote XSS vulnerability of
this popular service. We note that in
this case the source code of the W3C
tidy service wasn’t available (black-
box testing); only a Web interface was
available to interact with it.

The sophistication of the attack
vector produced by our CT technique
might explain why the vulnerabil-
ity had gone unnoticed for so long.
The W3C promptly � xed the o� end-
ing code and acknowledged SBA Re-
search’s e� ort.

Web application security
SBA Research demonstrated a second
example use of automated Web pene-
tration testing with the Koha integrated
library management system (https://
koha-community.org). Koha is used
by various organizations, including

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4

t
5 6

FDA Browser Server DBMS TCP/IP
MySQL MySQL2 Apache2 DSCS NeoKylin

Pe
rc

en
t

Figure 1. Cumulative fault distribution at t = 1–6 for various software applications. The
fault detection rate increases rapidly with interaction strength, up to t = 4, reaching 100
percent detection with four- to six-way interactions.

82	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

CYBERTRUST

UNESCO, the Spanish Ministry of Cul-
ture, and the Vienna Cultural Museum.
The source code of Koha is available
under an open source license. SBA Re-
search developed an IPM to test the API
of this Web-based application. The IPM
modeled the parameters passed back
and forth in the HTTP requests encoded
as URL parameters. We differentiated
two groups of tests: one using a normal

(nonprivileged user) account of the sys-
tem, and one using an administrator
(privileged user) account.

We successfully modeled 43 URLs
accepting between 5 and 15 parame-
ters, each of various values. We used
the NIST ACTS tool to produce test
suites that fully covered all possible
two-, three-, four-, and five-way para
meter combinations. We carried out
the testing experiments with the XSS
injection tool we used to also test the
W3C online tidy service.

We discovered more than 50 cases
of XSS vulnerabilities (www.exploit-db
.com/exploits/37389) in Koha and re-
ported these to the developers (https://
koha-community.org/security-release
-koha-3-20-1; https://koha-community
.org/security-release-koha-3-16-12).
Two related Koha 3.20.1 security
problems have since been assigned
identifiers on MITRE’s Common Vul-
nerabilities and Exposures (CVE) list:
CVE-2015-4630 and CVE-2015-4631.

System-call testing
The kernel of an operating system is its
central authority to enforce security fea-
tures. The Linux user base is extremely
large—for example, in 2013 more than
1.5 million Android devices were acti-
vated per day.13 Some manual tests exist
for the Linux kernel, such as those cre-
ated by the Linux Test Project (https://

github.com/linux-test-project/ltp).
There are also fuzzing techniques for
system-call testing.14 One such Linux
system-call fuzz tester is Trinity (http://
codemonkey.org.uk/projects/trinity).

We generated IPMs for the Linux
system-call API by introducing novel
combinatorial modeling methodol-
ogies.15 Furthermore, we developed
a highly configurable combinatorial

kernel testing framework, namely
ERIS, which encompasses automated
test execution and logging capabil-
ities. The testing framework allows
any test generator to be plugged in
for generating automated tests for
the Linux system calls. We used the
NIST ACTS tool to produce test suites
covering numerous t-way combina-
tions depending on the number of
system-call arguments. Our testing
experiments revealed various erro-
neous cases that we flagged for fur-
ther analysis.

Hardware Trojan detection
Contemporary hardware design shares
many similarities with software de-
velopment practice. The insertion of
malicious functionality in hardware
is a realistic threat. Hardware Trojan
activation can be controlled using a
short input pattern out of billions of
possibilities, and the effect of the Tro-
jan’s payload can be observed as erro-
neous circuit output. The attack can be
as subtle as introducing a faulty opera-
tion on a cryptographic core and deriv-
ing the cryptographic key afterward.16

Established functional testing tech-
niques don’t cope well with hardware
Trojans due to the enormous space of
possible input signals used as activa-
tion patterns. Modeling the attack as a
functional black-box testing problem,

we used CT to reduce the test suites’
size and, consequently, the testing
time by three orders of magnitude
compared to alternative approaches,
thereby guaranteeing multiple Tro-
jan activations. This research also
resulted in new, optimized CAs with
interaction strengths beyond 6 and
introduced CT as an efficient means
for hardware as well as software secu-
rity testing.17,18

Protocol interaction testing
Software implementations of the
Transport Layer Security (TLS) pro-
tocol are critical in the security of In-
ternet communications and beyond.
Software bugs and attacks still surface
and can be attributed to the complex-
ity of the protocol and its large number
of interactions. System designers and
integrators face a challenging task:
they must ensure that their system’s
TLS implementation can correctly
handle all cipher suites—the named
combination of cryptographic algo-
rithms to subsequently use that are ne-
gotiated between a client and a server
in the TLS connection establishment
phase—and, at the same time, con-
form to a desired level of a security.

We presented a coverage measure-
ment for recommendations on avail-
able TLS cipher suites.19 After deriving
the appropriate IPMs, we measured
and analyzed the cipher suites using
the NIST Combinatorial Coverage
Measurement (CCM) tool. None of the
proposed recommendations covered
all two-way combinations of algo-
rithms appearing in a cipher suite;
this might be due to incompatibilities
or security considerations. The analy
sis results also had implications for
aspects of test quality. For example,
increasing the number of potential
interactions between configuration
settings could also increase the risk
of bugs or vulnerabilities arising from
feature interactions among two or
more components. Thus, measuring
the level of two-way, three-way, and
higher-strength interactions might be
informative for testing.

Combinatorial methods are ideally suited for the
Internet of Things environment, where testing

can involve a very large number of nodes
and combinations.

	 O C T O B E R 2 0 1 6 � 83

The success of our CT-based ap-
proaches for security testing in
a wide variety of use cases mo-

tivates further intensive research in
this area. In particular, combinatorial
security testing might prove particu-
larly useful for the Internet of Things.
IoT systems send and receive data from
a large, often continually changing set
of interacting devices, and the number
of potential communicating pairs in-
creases with the square of the number
of devices. Combinatorial methods are
ideally suited for this environment,
where testing can involve a very large
number of nodes and combinations.

REFERENCES
1.	 J. Heffley and P. Meunier, “Can Source

Code Auditing Software Identify
Common Vulnerabilities and Be Used
to Evaluate Software Security?,” Proc.
37th Ann. Hawaii Int’l Conf. System
Sciences (HICSS 04), 2004; www
.computer.org/csdl/proceedings
/hicss/2004/2056/09/205690277.pdf.

2.	 D.R. Kuhn, R.N. Kacker, and Y. Lei,
Introduction to Combinatorial Testing,
CRC Press, 2013.

3.	 D.R. Kuhn, D.R. Wallace, and A.M.
Gallo Jr., “Software Fault Interac-
tions and Implications for Software
Testing,” IEEE Trans. Software Eng.,
vol. 30, no. 6, 2004, pp. 418–421.

4.	 K.Z. Bell, “Optimizing Effectiveness
and Efficiency of Software Testing: A
Hybrid Approach,” PhD dissertation,
North Carolina State Univ., 2006.

5.	 D. Cotroneo et al., “How Do Bugs
Surface? A Comprehensive Study
on the Characteristics of Software
Bugs Manifestation,” J. Systems and
Software, vol. 113, 2016, pp. 27–43.

6.	 Z. Ratliff et al., “The Relationship
between Software Bug Type and
Number of Factors Involved in Fail-
ures,” to be published in Proc. 27th
Int’l Symp. Software Reliability Eng.
(ISSRE 16), 2016.

7.	 Y. Lei et al., “IPOG: A General Strat-
egy for T-Way Software Testing,”
Proc. 14th Ann. IEEE Int’l Conf. and
Workshops Eng. of Computer-Based
Systems (ECBS 07), 2007, pp. 549–556.

8.	 T. Guild, “RXSS Security Audit Re-
sults,” blog, 11 Dec. 2014; www.w3
.org/blog/2014/12/rxss-security
-audit-results.

9.	 J. Bozic, D.E. Simos, and F. Wotawa,
“Attack Pattern–Based Combinato-
rial Testing,” Proc. 9th Int’l Workshop
Automation of Software Test (AST 14),
2014; doi: 10.1145/2593501.2533502.

10.	 J. Bozic et al., “Attack Pattern–Based
Combinatorial Testing with Con-
straints for Web Security Testing,”
Proc. IEEE Int’l Conf. Software Quality,
Reliability, and Security (QRS 15), 2015,
pp. 207–212.

11.	 B. Garn et al., “On the Applicability
of Combinatorial Testing to Web
Application Security Testing:
A Case Study,” Proc. Workshop
Joining AcadeMiA and Industry
Contributions to Test Automation and
Model-Based Testing (JAMAICA 14),
2014, pp. 16–21.

12.	 J. Bozic et al., “Evaluation of the
IPO-Family Algorithms for Test Case
Generation in Web Security Testing,”
Proc. IEEE 8th Int’l Conf. Software Test-
ing, Verification, and Validation Work-
shops (ICSTW 15), 2015; doi:10.1109
/ICSTW.2015.7107436.

13.	 A. Dobie, “Android Reaches 900 Mil-
lion Activations,” Android Central,
15 May 2013; www.androidcentral
.com/android-reaches-900-million
-activations.

14.	 A. Gauthier et al., “Enhancing
Fuzzing Technique for OKL4 Syscalls
Testing,” Proc. 6th Int’l Conf. Availabil-
ity, Reliability, and Security (ARES 11),
2011, pp. 728–733.

15.	 B. Garn and D.E. Simos, “Eris: A Tool
for Combinatorial Testing of the
Linux System Call Interface,” Proc.
IEEE 7th Int’l Conf. Software Testing,
Verification, and Validation Workshops
(ICSTW 14), 2014, pp. 58–67.

16.	 S. Bhasin et al., “Hardware Trojan
Horses in Cryptographic IP Cores,”
Proc. Workshop Fault Diagnosis and
Tolerance in Cryptography (FDTC 13),
2013, pp. 15–29.

17.	 P. Kitsos et al., “Exciting FPGA
Cryptographic Trojans Using Com-
binatorial Testing,” Proc. IEEE 26th

Int’l Symp. Software Reliability Eng.
(ISSRE 15), 2015, pp. 69–76.

18.	 A.G. Voyiatzis, K.G. Stefanidis, and P.
Kitsos, “Efficient Triggering of Trojan
Hardware Logic,” Proc. IEEE 19th Int’l
Symp. Design and Diagnostics of Elec-
tronic Circuits and Systems (DDECS 16),
2016, pp. 200–205.

19.	 D.E. Simos et al., “TLS Cipher Suites
Recommendations: A Combinatorial
Coverage Measurement Approach,”
to be published in Proc. IEEE Int’l
Conf. Software Quality, Reliability, and
Security (QRS 16), 2016.

DIMITRIS E. SIMOS is a key
researcher in applied discrete math-
ematics for information security and
leads the combinatorial security test-
ing team at SBA Research. Contact
him at dsimos@sba-research.org.

RICK KUHN is a project leader
and computer scientist in the
Computer Security Division of the
Information Technology Laboratory,
National Institute of Standards and
Technology (NIST). Contact him at
kuhn@nist.gov.

ARTEMIOS G. VOYIATZIS is a key
researcher in networked systems se-
curity at SBA Research. Contact him
at avoyiatzis@sba-research.org.

RAGHU KACKER is a project leader
and mathematical statistician in the
Mathematical and Computational
Sciences Division of the Information
Technology Laboratory, NIST. Contact
him at raghu.kacker@nist.gov.

DISCLAIMER
Products may be identified in this doc-

ument, but identification doesn’t imply

recommendation or endorsement by

NIST, nor that the products identified

are necessarily the best available for

the purpose.

