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Many software security vulnerabilities result 
from the exploitation of ordinary coding 
� aws, rather than design or con� guration 
errors. One study found that 64 percent of 

vulnerabilities are the result of such common bugs as 
missing or incorrect parameter checking, which leaves 
applications open to common vulnerabilities including 
bu� er over� ows or SQL injection.1 Although this statistic 
might be discouraging, it also means that better function-
ality testing can also signi� cantly improve security.

SECURITY TESTING
Testing that can reveal complex faults that occur only un-
der rare conditions could be especially e� ective. Empirical 
data show that most failures are triggered by a single para-
meter value, or interactions between a small number of 
parameters (generally two to six)—a relationship known 

as the interaction rule.2 An example 
of a single-value fault might be a 
bu� er over� ow that occurs when the 
length of an input string exceeds a 
particular limit. Only a single condi-
tion must be true to trigger the fault: 
input length > bu� er size. A two-way 
fault is more complex, because two 
particular input values are needed 
to trigger the fault. One example is 
a search/replace function that only 

fails if both the search string and the replacement string 
are single characters. If one of the strings is longer than 
one character, the code doesn’t fail; thus we refer to this 
as a two-way fault. More generally, a t-way fault involves t 
such conditions.

Figure 1 plots the cumulative percentage of faults at 
t = 1–6 for various software applications studied by the Na-
tional Institute of Standards and Technology (NIST) and 
others.3–6 As shown, the fault detection rate increases 
rapidly with interaction strength, up to t = 4, reaching 
100 percent detection with four- to six-way interactions. 
Thus, the impossibility of exhaustive testing of all possi-
ble inputs isn’t a barrier to high-assurance testing. That is, 
although we can’t test all possible combinations of input 
values, failures involving more than six variables are ex-
tremely unlikely because they haven’t been seen in prac-
tice, so testing all possible combinations provides very 
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little bene� t beyond testing four- to 
six-way combinations.

The e� ectiveness of any software 
testing technique depends on whether 
test settings corresponding to the ac-
tual faults are included in the test sets. 
When such settings aren’t included, the 
faults won’t be detected. Conversely, 
we can be con� dent that the software 
works correctly for t-way combinations 
contained in passing tests. For security 
evaluations, it isn’t enough that fail-
ures are unlikely to occur in ordinary 
usage, because attackers seek out even 
complex � aws. Testing only to verify 
requirements coverage is insu�  cient 
for security, or even for assuring criti-
cal functionality.

Matrices known as covering arrays
(CAs) can be computed to cover all 
t-way combinations of variable values, 
up to a speci� ed level of t (typically 
t ≤ 6), making it possible to e�  ciently 
test all such t-way interactions.7 But 
any test set, whether constructed as a 
covering array or not, contains a large 
number of combinations. We can mea-
sure this combinatorial coverage—
the coverage of t-way combinations 
in a test set—to better understand 
test set quality. These measurements 
contribute quantitative input for risk 
analysis, helping to answer questions 
such as: How many di� erent scenarios 
have been checked? Are the untested 
scenarios important? How signi� cant 
is the risk if we don’t increase the test 
coverage? Does market share or other 
external forces (for example, confor-
mance with standards) justify increas-
ing the test coverage?

COMBINATORIAL 
SECURITY TESTING
SBA Research and NIST have devel-
oped a research program that aims to 
bridge the gap between combinato-
rial testing (CT) and security testing 
and, in the process, establish a new 
research � eld: combinatorial security 

testing. Several case studies illustrate 
our experiences thus far.

Parsing untrusted Web content
The World Wide Web Consortium 
(W3C) tidy service (http://services.w3
.org/tidy/tidy) is designed to detect 
and correct HTML code. It accepts a 
URL through a Web form, then parses 
its HTML source code and reports any 
� xes that should be made. The service 
has been online for many years now, 
being exposed to multiple instances of 
malformed code.

In coordination with the W3C, 
SBA Research performed an external 
Web application penetration test.8

We � rst created an input parameter 
model (IPM) of the Document Object 
Model (DOM) and generated an at-
tack grammar. The resulting IPM was 
an enhancement of our previous CT-
based approaches for Web security 
testing.9–11 We then used the NIST 
Automated Combinatorial Testing for 
Software (ACTS) tool to produce test 
cases that ensured 100 percent cover-
age of the DOM’s two- and three-way 

parameter interactions, as recent 
studies demonstrated its e� ectiveness 
for Web security testing.12 We tested 
the online service against the gener-
ated test suite using a prototype cross-
site scripting (XSS) injection tool and 
succeeded in discovering a previously 
unknown remote XSS vulnerability of 
this popular service. We note that in 
this case the source code of the W3C 
tidy service wasn’t available (black-
box testing); only a Web interface was 
available to interact with it.

The sophistication of the attack 
vector produced by our CT technique 
might explain why the vulnerabil-
ity had gone unnoticed for so long. 
The W3C promptly � xed the o� end-
ing code and acknowledged SBA Re-
search’s e� ort.

Web application security
SBA Research demonstrated a second 
example use of automated Web pene-
tration testing with the Koha integrated 
library management system (https://
koha-community.org). Koha is used 
by various organizations, including 
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Figure 1. Cumulative fault distribution at t = 1–6 for various software applications. The 
fault detection rate increases rapidly with interaction strength, up to t = 4, reaching 100 
percent detection with four- to six-way interactions.
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UNESCO, the Spanish Ministry of Cul-
ture, and the Vienna Cultural Museum. 
The source code of Koha is available 
under an open source license. SBA Re-
search developed an IPM to test the API 
of this Web-based application. The IPM 
modeled the parameters passed back 
and forth in the HTTP requests encoded 
as URL parameters. We differentiated 
two groups of tests: one using a normal 

(nonprivileged user) account of the sys-
tem, and one using an administrator 
(privileged user) account.

We successfully modeled 43 URLs 
accepting between 5 and 15 parame-
ters, each of various values. We used 
the NIST ACTS tool to produce test 
suites that fully covered all possible 
two-, three-, four-, and five-way para
meter combinations. We carried out 
the testing experiments with the XSS 
injection tool we used to also test the 
W3C online tidy service.

We discovered more than 50 cases 
of XSS vulnerabilities (www.exploit-db 
.com/exploits/37389) in Koha and re-
ported these to the developers (https://
koha-community.org/security-release 
-koha-3-20-1; https://koha-community 
.org/security-release-koha-3-16-12). 
Two related Koha 3.20.1 security 
problems have since been assigned 
identifiers on MITRE’s Common Vul-
nerabilities and Exposures (CVE) list: 
CVE-2015-4630 and CVE-2015-4631.

System-call testing
The kernel of an operating system is its 
central authority to enforce security fea-
tures. The Linux user base is extremely 
large—for example, in 2013 more than 
1.5 million Android devices were acti-
vated per day.13 Some manual tests exist 
for the Linux kernel, such as those cre-
ated by the Linux Test Project (https://

github.com/linux-test-project/ltp). 
There are also fuzzing techniques for 
system-call testing.14 One such Linux 
system-call fuzz tester is Trinity (http://
codemonkey.org.uk/projects/trinity).

We generated IPMs for the Linux 
system-call API by introducing novel 
combinatorial modeling methodol-
ogies.15 Furthermore, we developed 
a highly configurable combinatorial 

kernel testing framework, namely 
ERIS, which encompasses automated 
test execution and logging capabil-
ities. The testing framework allows 
any test generator to be plugged in 
for generating automated tests for 
the Linux system calls. We used the 
NIST ACTS tool to produce test suites 
covering numerous t-way combina-
tions depending on the number of 
system-call arguments. Our testing 
experiments revealed various erro-
neous cases that we flagged for fur-
ther analysis.

Hardware Trojan detection
Contemporary hardware design shares 
many similarities with software de-
velopment practice. The insertion of 
malicious functionality in hardware 
is a realistic threat. Hardware Trojan 
activation can be controlled using a 
short input pattern out of billions of 
possibilities, and the effect of the Tro-
jan’s payload can be observed as erro-
neous circuit output. The attack can be 
as subtle as introducing a faulty opera-
tion on a cryptographic core and deriv-
ing the cryptographic key afterward.16

Established functional testing tech-
niques don’t cope well with hardware 
Trojans due to the enormous space of 
possible input signals used as activa-
tion patterns. Modeling the attack as a 
functional black-box testing problem, 

we used CT to reduce the test suites’ 
size and, consequently, the testing 
time by three orders of magnitude 
compared to alternative approaches, 
thereby guaranteeing multiple Tro-
jan activations. This research also 
resulted in new, optimized CAs with 
interaction strengths beyond 6 and 
introduced CT as an efficient means 
for hardware as well as software secu-
rity testing.17,18

Protocol interaction testing
Software implementations of the 
Transport Layer Security (TLS) pro-
tocol are critical in the security of In-
ternet communications and beyond. 
Software bugs and attacks still surface 
and can be attributed to the complex-
ity of the protocol and its large number 
of interactions. System designers and 
integrators face a challenging task: 
they must ensure that their system’s 
TLS implementation can correctly 
handle all cipher suites—the named 
combination of cryptographic algo-
rithms to subsequently use that are ne-
gotiated between a client and a server 
in the TLS connection establishment 
phase—and, at the same time, con-
form to a desired level of a security.

We presented a coverage measure-
ment for recommendations on avail-
able TLS cipher suites.19 After deriving 
the appropriate IPMs, we measured 
and analyzed the cipher suites using 
the NIST Combinatorial Coverage 
Measurement (CCM) tool. None of the 
proposed recommendations covered 
all two-way combinations of algo-
rithms appearing in a cipher suite; 
this might be due to incompatibilities 
or security considerations. The analy
sis results also had implications for 
aspects of test quality. For example, 
increasing the number of potential 
interactions between configuration 
settings could also increase the risk 
of bugs or vulnerabilities arising from 
feature interactions among two or 
more components. Thus, measuring 
the level of two-way, three-way, and 
higher-strength interactions might be 
informative for testing.

Combinatorial methods are ideally suited for the 
Internet of Things environment, where testing 

can involve a very large number of nodes  
and combinations.
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The success of our CT-based ap-
proaches for security testing in 
a wide variety of use cases mo-

tivates further intensive research in 
this area. In particular, combinatorial 
security testing might prove particu-
larly useful for the Internet of Things. 
IoT systems send and receive data from 
a large, often continually changing set 
of interacting devices, and the number 
of potential communicating pairs in-
creases with the square of the number 
of devices. Combinatorial methods are 
ideally suited for this environment, 
where testing can involve a very large 
number of nodes and combinations. 
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