
Investigating TERO for Hardware Trojan Horse 

Detection 

Paris Kitsos
¶
 

Computer and Informatics Engineering Department 

Technological Educational Institute of Western Greece 

Antirrion, Greece 

e-mail: pkitsos@teimes.gr 

Artemios G. Voyiatzis 

Industrial Systems Institute, “Athena” Research and 

Innovation Center in ICT and Knowledge Technologies 

Platani Patras, GR-26504, Greece  

e-mail: bogart@isi.gr

 
Abstract—The Transient Effect Ring Oscillator (TERO) was 

initially proposed for TRNG designs and lately for implementing 

Physically Uncloneable Function (PUF) designs. In this work, the 

effectiveness of TERO for hardware Trojan horse detection is 

examined. For this purpose, the implementation of the SNOW3G 

stream cipher and three example Trojans are used. Experiments 

and comparisons are reported in terms of the frequency count of 

the Trojan-free and the Trojan-infected (modified) circuits 

containing TEROs of variable lengths. Our findings indicate that 

a TERO can be a sensitive sensor but still it cannot provide 

reliable detection in all cases.  

Keywords—hardware Trojan horse detection; SNOW3G stream 

cipher; Transient Effect Ring Oscillator (TERO); hardware 

malware; Spartan 6 (SAKURA G board) FPGA 

I. INTRODUCTION 

The Transient Effect Ring Oscillator (TERO) is a circuit 

that oscillates due to its inherent logic. The oscillation 

frequency depends on the exact components and the size of a 

circuit similarily to the case of a Ring Oscillator (RO). TERO 

was initially proposed for implementing a True Random 

Number Generator [1]. Recently, it was proposed for 

implementing also a Physically Uncloneable Function (PUF) 

[2]. In this work, we propose a novel use of TERO for 

hardware Trojan detection and we explore its applicability and 

efficiency as a extra tool for hardware Trojan horse detection.  

II. TERO CIRCUIT 

A Transient Effect Ring Oscillator (TERO) is composed of 

an SR flip-flop implemented with two XOR gates and two 

AND gates [1]. This architecture has two control signals, for 

start and reset. The correct place-and-routing for a TERO is 

important so as to ensure the same length of the 

interconnections between the XOR gates. 

In this work, we have used a simpler TERO architecture, 

where the XOR and AND gates are merged into NAND gates 

with some inverters in the feedback loop, as depicted in Fig. 1. 

The advantage of this approach is that only one control signal 

is used either for resetting or oscillating the TERO circuit. The 

reset occurs when the control signal, ctrl, is set to ‘0’ and 

drives the loop to the same initial conditions before generating 

its output. When the control signal changes from ‘0’ to ‘1’, the 

TERO circuit starts to oscillate. An asynchronous counter 

(Counter) was used so as to measure the TERO frequency.  

ctrl

Counter

 
Fig. 1. TERO circuit 

III. EXPERIMENTAL SETUP 

In order to investigate the effectiveness of the TERO, we 

realized three hardware Trojan horses. The first one (Trojan1), 

a combinational circuit, is formed as a tree of AND gates and 

the output of the tree is fed into a XOR gate that drives the 

system reset signal. Trojan1 reads bits 24-31 of the output. If 

the bits are equal to 0xFF, the Trojan is activated and 

deactivates the reset signal. 

Trojan2 is a time bomb. It consists of a simple counter and 

a AND tree that reads bits 13-16 of the cipher’s output and the 

tree output drives the enable signal of the Trojan counter. If the 

AND tree counts 100 sequences of “111” at the cipher’s 

output, then Trojan2 deactivates the SNOW3G reset signal. 

Trojan3 consists of two AND trees and two asynchronous 

counters. The first AND tree focuses on bits 13-16 of the 

cipher output and it is used so as to activate the first counter 

(counter1). If a sequence of “1111” occurs, then counter1 is 

activated. Every second activation of counter1, Trojan3 outputs 

and activation signal (tmp_load) that is used so as to trigger the 

second counter (counter2). The tmp_load signal is combined 

with three internal bits and through the second AND tree is 

used for activating the second counter. Then, after 62 pulses, 

counter2 deactivates the cipher reset signal. 

Following the taxonomy of [3], we assume that the 

malicious circuit is inserted during the design phase, at the 

register transfer level and located at I/Os, with the aim to 

perform a denial-of-service (DoS) attack.  

The three Trojans target the SNOW3G stream cipher [4]. 

The SNOW3G is a word-oriented stream cipher that generates 

a sequence of 32-bit words under the control of a 128-bit key 

and a 128-bit initialization variable. At first, a key initialization 

process is performed and the cipher is clocked without 

producing output. Then, the cipher operates in the key-

generation mode and it produces a 32-bit ciphertext/plaintext 

word output in every clock cycle. The architecture of the 

SNOW3G cipher is depicted in Fig. 2. A cryptographic 

primitive is an attractive target for a Trojan due to the critical 

¶ Collaborating Faculty with the Industrial Systems Institute, “Athena” 
RIC in ICT and Knowledge Technologies. 

This work was partially supported by the GSRT Action “KRIPIS” with 

national and EU funds in the context of the research project “ISRTDI” and by 
COST Action IC1204 “TRUDEVICE”. 



information processed and the enormous search space for 

detecting. The Trojan payload may leak the key information, 

skip the cryptographic operations altogether, or perform a 

denial-of-service attack.  

S15

32-bit

S14

32-bit

S11

32-bit

S5

32-bit

S2

32-bit

S1

32-bit

S0

32-bit

M

U

X

S6

32-bit

32

α

R1 R2

32

32

32

S1_T0

S1_T1

S1_T2

S1_T3

8

8

8

8

32

32

32

32

32

R3

32

S2_T0

S2_T1

S2_T2

S2_T3

8

8

8

8

32

32

32

32

32

32-

bit
32

Zt32

32

32

32

32

“0”

32

a
-1

32

 
Fig. 2. SNOW3G hardware architecture[5] 

A Spartan 6 (XC6SLX75-2CSG484C) FPGA, the base of 

the SAKURA G board, was used in our experiments. The setup 

consists of the design of SNOW3G cipher with TERO and the 

circuits of the hardware Trojan horses. We used the 

implementation file extracted by PleanAhead tool and 

especially the VHDL code of the Post-Place and Route 

simulation model. The model was simulated so as to derive the 

TERO oscillation frequency. 

In our experiments, we used TEROs of different lengths so 

as to devise the optimal length for detecting the Trojan. The 

hardware Trojan horses occupied a small percentage of the 

available area and the TERO was placed in the circuit in a 

controllable fashion. In order to insert the hardware Trojan 

horses in a design implemented on FPGA, we use the hardware 

description language (HDL). While this method can be used to 

create many types of hardware Trojan horses, it is impossible 

to guarantee the exact place for the hardware Trojan horse 

insertion. If two systems are synthesized on the same FPGA 

board and they differ only to one hardware resource, the 

synthesis procedure will probably devise a completely different 

placing and routing. 

In order to achieve efficient, fair, and, most importantly, 

accurate measurements, one must build designs with the same 

place and route for clean and infected SNOW3G. This can be 

accomplished using BEL and LOC placement constraints. For 

the case of TERO, we have used parameterized area 

constraints. There are four designs: a) a Trojan-free, containing 

SNOW3G and TERO), b) the Trojan-free plus Trojan1, c) the 

Trojan-free plus Trojan2, and d) the Trojan-free plus Trojan3.  

IV. RESULTS AND FUTURE WORK 

Snapshots of the four layouts are depicted in Fig. 3. The 

TERO layout is shown as a white trace. It can be seen that the 

same layout for the circuits SNOW3G and TERO were created. 

This means that the hardware resources of the identical circuits 

are placed and routed on the same locations on the FPGA. We 

decided to diffuse the Trojans around the cipher circuit and 

implement TERO in between the SNOW3G cipher and Trojans 

so as to better “sense” the process variations. In the sense that 

the greater distance between the counts means better reliability 

and detection sensitivity of designs with hardware Trojan 

horses, the best metric is the absolute difference of oscillation 

counts between the Trojan-free and the infected circuits. 

Table I summarizes the performance of TERO. It is clear 

that TERO is more sensitive when small lengths are used. Its 

sensitivity decreases as the lengths increase and in the case of 

Trojan1, it cannot reliably detect the Trojan presence. 

As a future work, we plan to implement SNOW3G as an IP 

core and experiment with TERO in SAKURA G and VC707 

(Virtex 7) boards. 

 
                                                        (a)                            (b)                           (c)                             (d) 

Fig. 3. Implementation layout of (a) SNOW3G andTERO (no Trojan); (b) infected with Trojan1 (c) infected with Trojan2; and (d) infected with Trojan3 

 
TABLE I. ABSOLUTE DIFFERENCES FOR TERO 

TERO 

length 

Abs. Diff  

(Tr. free-Tr.1) 

Abs. Diff. 

(Tr. free-Tr.2) 

Abs. Diff. 

(Tr. free-Tr.3 

TERO-04 99 99 165 
TERO-08 20 99 66 
TERO-12 9 67 51 
TERO-16 2 40 41 
TERO-20 0 66 66 
TERO-24 4 48 48 

REFERENCES 

[1] M. Varchola and M. Drutarovsky, “New high entropy element for FPGA 
based true random number generator”, in Proc. Int. Conf. CHES, Santa 
Barbara, 2010, pp. 351-365. 

[2] L. Bossuet, X, Thuy Ngo, Z. Cherif, and V. Fischer, “A PUF based on a 
Transient Effect Ring Oscillator and insensitive to locking 
phenomenon”, IEEE Trans. on Emerging Topics in Computing, Vol. 2, 
No. 1, pp. 30-36, March 2014. 

[3] R. Karri, J. Rajendran, K. Rosenfeld and M. Tehranipoor, “Trustworthy 
hardware: Identifying and classifying hardware Trojans”, IEEE 
Computer, October 2010, vol. 43, no. 10 

[4] Specification of the 3GPP Confidentiality and Integrity Algorithms 
UEA2 & UIA2. Document 2: SNOW 3G Specification, ETSI/SAGE 

Specification, Version: 1.1 Date: 6th September 2006. 

[5] P. Kitsos, G. Selimis, O. Koufopavlou, “High performance ASIC 
implementation of the SNOW 3G stream cipher”, IFIP/IEEE VLSI-SOC 
2008 - International Conference on Very Large Scale Integration (VLSI 
SOC), Rhodes Island, Greece, October 13-15, 2008. 


