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Abstract

Key replacement in cryptographic building blocks (al-
gorithms and protocols) is a required operation in order
to meet the security requirements. The common practice
is to have only one cryptographic key validfor any given
time moment and periodically change this key. We pro-
pose a scheme that allows multiple keys to be valid at any
moment and describe a method that allows the receiver
to identify the key usedfor each encryption with minimum
effort, while not allowing an attacker to deduce this infor-
mation. The proposed scheme introduces little computa-
tional performance overhead at the price of superior se-
curity characteristics and lower bandwidth utilization for
control information.

1. Introduction

Advances in digital communication technologies al-
lows transfer of information from geographically dis-
persed areas. For scale of economy, communication chan-
nels between end systems are implemented through pub-
lic or by other means shared communication links. Secure
communications is a requirement that has to be met, es-
pecially for critical applications, like transactions of eco-
nomic impact or in an industrial factory, where espionage
is a threat.

The science of cryptography contributes algorithms
and protocols for ensuring data privacy, data origin au-
thentication and data integrity. Key management schemes
control the use of cryptographic keys for the underlying
building blocks (algorithms and protocols), in such man-
ner that the security requirements are met and the effi-
ciency is maximized for the specific application.

Key management refers to the life cycle of crypto-
graphic keys [3]. Key management incorporates the op-
erations of key generation, key distribution, key storage,
key replacement and exchange, key usage, and key de-
struction.

*This work was partially supported by the EU E-Next project FP6-
506869

We focus on the problem of key replacement and ex-
change. Periodic changes of cryptographic keys is a nec-
essary operation as to ensure (i) minimal exposure of plain
data in case of key compromise and (ii) minimal collec-
tion of encrypted data under the same key, as to harden
cryptanalytic attacks.

From the six management operations, key replacement
and exchange can be the only one that requires exchange
of control information over the communication channel.
For this, it is an attractive target for an attacker, since it
does not require physical access to end systems that store
the keys.

Designers of secure systems rely on the fact that keys
are periodically changed, in order to maintain the high
level of security offered by the cryptographic primitives.
Key replacement operations define the rekeying period for
an algorithm (how often the key should be changed) and
the behavior of the system during transition periods where
both an old and a new key may be valid. This can hap-
pen for example in a loosely synchronized environment,
where some clients can receive out-of-order packets from
the servers.

In this paper, we explore a novel approach to the key
replacement operation. The approach is to have multiple
keys valid at any given time and allow the sender to choose
from the set of valid keys the one to encrypt a packet. Our
approach requires that the receiver has a means to deduce
which key from the set of valid ones was used. This piece
of information must be agreed between the sender and the
receiver in a secure fashion.

The approach we propose has three desirable proper-
ties for protecting against cryptanalytic attacks: (i) the at-
tacker must find which packets are encrypted under the
same key, in order to then mount a specific cryptanalytic
attack, (ii) consecutive packets that may carry redundant
information are encrypted under a different key, and (iii)
the disclosure of one key does not reveal the contents of
a whole session; even if an attacker can know the time
moments that the compromised key is used, he cannot re-
semble a whole session but only sketchy details of it.

These properties allow to extend a key's lifetime, both
in terms of time of use and volume of data encrypted un-
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der the same key. This extension of lifetime is desirable
in many environments, since it achieves a higher level of
security utilizing the same cryptographic primitives, it re-
quires less frequent control messages to be exchanged,
and it requires fewer management operations.

To the best of our knowledge, there has been no other
proposal for allowing multiple cryptographic keys to be
valid at any given time moment. The only exception are
transient states between key changes, where a receiver due
to synchronization skews may be required to try both the
"old" and "new" key to derive the plain data.

The paper is organized as follows. Section 2 and 3
present an overview of current practices in key manage-
ment and key replacement schemes. Section 4 introduces
the idea of controlled randomness and Section 5 evaluates
the proposed scheme. Section 6 concludes the paper.

2. Key management

In many real world problems, two parties need to ex-
change information in a secure manner over an insecure
communication channel. Encryption algorithms, using a
symmetric (secret) or an asymmetric (public) key are used
to ensure such security. The key management problem
refers to the process by which two or more parties use
a common encryption/decryption key for their commu-
nication. Key agreement and key transport are the two
main problems for a key management scheme. The for-
mer refers to the process by which the parties agree on a
common key to use, while the latter refers to the process
by which the key is transferred to all interested parties.

Key management schemes can be classified in three
major categories:

* Public Key only (PK): a public key algorithm is used
with a single public-secret key pair. The key is used
to encrypt and decrypt the information for a long
time. In an extension of this scheme, we denote it
as PK-M, a new key is derived periodically, but the
new key is transferred to the other communicating
party using the current active key. PK-M does not
offer forward secrecy and thus, it is not considered
much safer than the simple PK.

* Secret Key only (SK): a secret key algorithm is used,
with a single key shared by the two parties, as in
PK. There also exist variations, such as the Secret
Key - Master (SK-M), where a master secret key is
known to the two parties; this key is used to derive
ephemeral keys and exchanged data are encrypted
with the ephemeral keys. Either the keys can be
transferred along the channel (SK-ME), in analogy to
PK-M, or feed a synchronized function in both sides
that derive the same key periodically (SK-MR).

* Hybrid Key Model (HKM): a PK algorithm is used
to transfer either a control signal for the SK-MR
scheme above or to transfer the actual secret key to
be used.

The HKM model is used in a wide range of applica-
tions because it combines the advantages of both PK and
SK, while eliminating their disadvantages. In regard to SK
family of key management schemes, we focus on block ci-
phers, because they constitute the base of SK systems. A
stream cipher, which is the alternative to a block cipher,
can be implemented either as the output of a block cipher
or the output of a synchronized random number generator.
Maintaining a synchronized random number generator is
not a trivial issue and usually involves exchange of syn-
chronization information.

All currently known key management schemes fall in
one of these areas. One common characteristic of all these
schemes is that at any given time instance at most one
key is valid in the system. The only exception is at the
time moments when the key changes, in cases where exact
synchronization between the communicating parties is not
feasible. In these cases, it is inevitable for a receiver to try
to decrypt with both the old and the new key for a small
time frame, in order to ensure that it remains synchronized
with the sender on the correct key used.

This approach seems a wise one. Having one key valid
at any given time simplifies management and contributes
to efficiency as well. Furthermore, from a security point
of view, it is quite challenging to design a scheme to trans-
fer information on which key is used for each encryption,
while not allowing an eavesdropper to access such infor-
mation.

3. Key replacement and exchange schemes

The problem of key replacement and exchange refers
to the frequency of key changes. Periodic key changes are
necessary, since plain data tend to have redundant infor-
mation. Redundancy is a means to attack a cryptosystem.
Furthermore, key updates are necessary in order to limit
the effects of a key compromise.

Hybrid key management schemes (HKM) are typically
used for networked environments with many participants
and point-to-point communications. A public-key scheme
is used to periodically transmit a new symmetric key
through the control channel. The symmetric key is used
for subsequent encryptions and decryptions of the data
channel communications.

In typical resource-limited environments, the public-
key scheme is too costly to implement. For this, a
symmetric-key algorithm is used in the control chan-
nel, using a master, pre-shared key, leading to an SK-M
scheme.

In both cases, symmetric key cryptography is used in
the data channel; the keys are periodically changed in or-
der to ensure a high level of security. These keys are called
ephemeral or session keys, since they have a limited life-
time. A higher level of security is achieved because the
amount of consecutive data encrypted under the same key
is minimized and thus, the exposure of one ephemeral key
cannot expose all keys used (or at least this should be the
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case).
We identify two main issues in this process. The first

one is that consecutive and possibly redundant pieces of
information are encrypted under the same secret key. Key
updates offer a layer of protection, by limiting the number
of ciphertexts per each key. However, advances in crypt-
analysis may lower the number of ciphertexts needed for
deriving a secret key. Countermeasures for such advances
must be incorporated in the key management scheme in
order to refresh the key more often. This results in more
control messages in the channel, lowering the available
bandwidth for actual and useful data and increasing the
resources needed for public key decryptions, in the case
of HKM, or increasing the data exposed by master key
encryptions, in the case of SK-M.

The second issue is that a public key algorithm outputs
typically 1024 or 2048 bits, while the secret key informa-
tion encrypted using these algorithms is (again typically)
128 or 256 bits (64-bit keys are not considered secure cur-
rently). Thus, resources are wasted, in the form of band-
width, since only 256 out of 1024 bits are useful, and in
the form of computational resources and thus, energy con-
sumption. Clearly, four or eight keys can be sent per pub-
lic key encryption operation. Such a resource waste can be
a significant overhead in resource-limited environments,
such as embedded, battery-operated systems.

These two issues, drive our research: can we expose
less information about which ciphertexts are encrypted
under the same key? Can we better utilize the available
bandwidth without sacrificing the security of the system?

4. Controlled randomness

Having at most one key valid at any time moment al-
lows the attacker to focus his/her efforts on finding this
specific key. Furthermore, having large consecutive pieces
of information encrypted under the same key enables
some forms of cryptanalysis, like known-plaintext or dif-
ferential cryptanalysis. The same holds when implement-
ing a control channel to transfer key management com-
mands, like "new key is ki" or "update key". An attacker
can eavesdrop these messages, or at least detect their pres-
ence, which allows classification of the traffic to classes
of data encrypted under the same key. If more than one
keys are valid at any time instance, while no control in-
formation is used, then an attacker has harder work: now
one can know that a set of keys is valid. One must classify
the eavesdropped ciphertexts according to the key used for
each ciphertext, in order to mount a differential or known-
plaintext cryptanalysis attack.

In the absence of control information, the receiver
needs a method to quickly decide which of the valid keys
has been used. If control information is transmitted to the
receiver, these information can be utilized by the attacker
also. Thus, it must be avoided, if possible. One simple so-
lution to this problem would be to decrypt received pack-
ets with all possible keys. Clearly, this approach does not

scale well with the number of valid keys. The cost of the
system is proportional to the number of decryptions that
must be performed per time unit. In the next paragraphs,
we propose a scheme that can identify efficiently the right
key to use for each decryption, without utilizing a control
channel.
We introduce the concept of controlled randomness for

key replacement and exchange. The driving idea behind
this concept is to allow multiple keys to be valid at any
given time. The sender can choose for every packet or
every few packets one key from the set and encrypt the
data. In order to be both efficient and secure, such a
scheme requires that the receiver must be able to eas-
ily identify which of the valid keys has been used for
the encryption of a specific packet. To meet the secu-
rity requirements, this information must not be available
to an attacker that eavesdrops traffic exchanged between
the sender and the receiver. In order to achieve this, we
must address the following questions:

* What is the method that allows only the receiver to
identify the correct key?

* How is the "control" channel protected from an
eavesdropper?

* How this scheme hampers available bandwidth and
application throughput?

* Is it efficient?

We provide the answers in the following subsections.

4.1. Key identification
A receiver can identify the correct key used for an en-

cryption using at least two different methods, with respec-
tive advantages and disadvantages.
A first method is to have a synchronized random num-

ber generator with the sender. Both the sender and the
receiver use this generator to produce a random integer
between 1 and N, assuming that at most N different keys
can be valid at any given moment. Since the two gen-
erators are synchronized, they can both know which key
has been used for the encryption of each packet. How-
ever, an attacker eavesdropping the channel will not have
this information available, since the information is never
exchanged between the two ends. This method has the
drawback that the two random number generators must
remain continuously synchronized; in case of loss of syn-
chronization, messages must be exchanged through a con-
trol channel to achieve resynchronization.
A second method is to utilize a Keyed Hash Function,

commonly referenced as Message Authentication Code
(MAC). The scheme operates as follows. The two en-
tities, Alice and Bob, share a set of f secret keys for a
symmetric key cryptosystem and a set of f secret keys for
a message authentication code (MAC). Alice acts as the
sending party and Bob as the receiving. For the moment,
we do not identify how the keys are transferred between
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Alice and Bob; this will be described in the next section.
We use the notation Eaig (mj, ki) to denote encryption of
input data mj with key ki using the encryption algorithm
alg. We denote concatenation of two strings of data with
the symbol 11

For each message that Alice sends, Alice:

1. draws a random number between 1 and X, with uni-
form distribution,

2. sends Ealg(mj, ki) MAC(Ealg(mj, ki), hi), i.e., a
message mj encrypted with the i-th encryption key
and a MAC of the encrypted message, keyed with the
i-th hashing key.

For each received message, Bob:

1. hashes the encrypted message with all possible hash
keys, hi, in order to find which one Alice used,

2. finds the corresponding position i,

3. decrypts using the i-th encryption key, ki to derive
message mj.

This method of controlled randomness (utilization of
MAC algorithms) has the advantage that it does not re-
quire the two parties to remain synchronized. Further-
more, from an implementation point of view, it requires
only the sender to implement a random number generator.

In short, the controlled randomness scheme offers the
following advantages:

* it uses a set of keys for each transmission instead of
just one key,

* no key information or other control signals are trans-
mitted over the channel during a session,

* it offers sender authentication through a MAC func-
tion,

* it offers data confidentiality though a secret-key en-
cryption function.

The security of the proposed scheme is based on hash
functions and, especially, message authentication code
(MAC) algorithms, in order to avoid transferring key in-
formation through the communication channel.

Based on the advantages of the controlled randomness,
the second proposed key management scheme has three
major advantages:

* no need of synchronization is required between
sender and receiver,

* no key information is transferred over the channel,

* a set of keys is not used sequentially (temporal keys);
the attacker cannot know a priori which key is used
at any given time frame and no signaling information
is provided to help him detect whenever a new key is
used.

In short, controlled randomness implements a method
that uses concurrently all the f different keys in one ses-
sion (i.e., every key can be used at any time) and not lin-
early (use key k1 for the first period, k2 for the second, and
so on). Figures 1 and 2 illustrate the linear use of keys in
classical cryptosystems and the random but controlled use
of keys as we propose respectively.

In our scheme, MAC functions are used to protect the
secret keys rather than the message itself. The usage of
a MAC algorithm enables us to avoid transmission of key
information over the insecure communication channel.

5. Evaluation of the Controlled Randomness
Scheme

5.1. Security
For the security evaluation, we will consider a session

as a time frame. We also introduce Eve, which is an en-
tity being able to eavesdrop the communication channel.
In the session lifetime, we assume that at most f different
keys are used. We consider two known scenarios. In the
first scenario, a secret-key algorithm is used, with a prede-
fined key, k, which is used continuously to encrypt data.
In the second scenario, a secret-key algorithm is used,
with a predefined master key, k. At specific time mo-
ments, the two parties synchronize and derive ephemeral
keys: ki for the first period, k2 for the second, and so on
up to kf for the £-th and last period.
We compare the security offered by our scheme against

these two scenarios. For all the three scenarios, we con-
sider that the same secret key algorithm is used with a key
of n bits size. For an otherwise secure secret key algo-
rithm, the best known attack is not a brute force attack
of complexity 0(2') but the birthday paradox attack of
complexity 0(2n/2). This is the security offered by the
first scenario. For the second scenario, it is known that the
rekeying process increases the complexity of the attack to
0(22n/3) for deriving the master key used [1].

In our scheme, we consider that the f different keys are
produced independently. Thus, an obvious improvement
is that we achieve a linear increase in the attack complex-
ity compared to the first scenario; the complexity becomes
O (f2n/2).

In order to apply such an attack, Eve (the attacker)
must know which key, or at least which index of the keys,
has been used for each eavesdropped packet. Indeed, this
would allow Eve to classify the packets in groups; in each
group a single key, maybe unknown, has been used. How-
ever, this is infeasible, because Eve cannot derive the key
or the key index, as we demonstrate below.

In our scheme, the sender uses a secure random num-
ber generator to decide which key to use in each period.
Eve has two options in order to identify the key (or the key
index) and perform the classification. The first approach is
to attack the random number generator (RNG) and find its
state and/or seed. We can safely assume that the RNG has
a rather long period, that will render this attack unrealistic.
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Figure 1. Linear use of keys during a session (classical cryptosystems)
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Figure 2. Concurrent use of keys during a session (proposed scheme)

For example, the ISAAC RNG has a state of m = 16583
or m = 8295 bits for 64-bit and 32-bit implementations,
respectively [4]. In case Eve opts for this, she must per-
form 0(f2m) decryptions before being able to decide the
state of the RNG. This is quite unrealistic, because in most
cases m >> n and thus, a brute force attack is preferable.

Eve's second approach would be to attack the MAC
algorithm. Eve has as input the eavesdropped ciphertext
E(mj, ki) and can try all possible keys hi in order to pro-
duce the eavesdropped hash MAC(Ealg(mj, ki), hi).

On average, min{0(f2t, 0(f2P)} MAC operations
must be performed, where p denotes the size of the MAC
key and t the size of hashed message. Typically, t = p.
After this work, Eve knows which ciphertexts are en-
crypted under the same key; she must then apply the best
known attack for the secret key algorithm to derive the se-
cret keys. So, the total complexity of an attack to derive
all the secret keys would be 0(ti (2P + £2n/2)).
An argument against the security of the scheme would

be that the same keys are used quite often, compared to a
traditional HKM scheme. It is important to note however
that, it is not the secret keys that offer increased security;
in our analysis we compare a worst-case scenario, where
the keys in our scheme are used with the same frequency
of those of the other scenarios. Recall that the motiva-
tion to change keys frequently is to not allow the attacker
to collect enough information to mount an attack. Since
the secret keys' usage is protected by the MAC, an at-
tacker cannot derive the time instance when a specific key
is used; to increase his efforts further, we can change each
key's usage more frequently and thus, use more than f and
up to N different keys within a session.

5.2. Efficiency
The security analysis of the previous section indicates

that our scheme would be preferable to deploy than a
scheme with ephemeral secret keys, in terms of security.
To further support this view, we emphasize that:

* no synchronization is needed between the server and
the receiver to produce and use the same ephemeral
key, in case they operate autonomously,

* there is no need for a "control" channel between the

two parties to transfer new keys and/or other syn-
chronization information. The hashed messages for
each encrypted packet act as synchronization signals,
but are incomprehensible by an eavesdropper.

A tempting approach to increase the efficiency of the
scheme is to pass the index of the key or a hash of the
key, instead of the MAC of the encrypted message. This
would require less work by the receiving entity. However,
as presented earlier, this lowers the security of the scheme
dramatically, since an eavesdropper could derive which
packets are encrypted with which key. Yet, the scheme
is more secure than a linear encryption, in the sense that
consecutive data are still encrypted with different keys.
Such an approach could be desirable for heavily resource-
constrained systems.
An argument against the efficiency of the scheme could

be that the computation of f MAC hashes poses a signif-
icant overhead in the system. Clearly, security does not
come free. The scheme offers superior security than the
currently known schemes. Furthermore, the implementa-
tions of MAC functions tend to be one order of magnitude
faster than secret-key decryptions [2]. If we consider as c
the work for a decryption, the work in our scheme can be
as high as c + &cj10. We can decrease this number, with-
out sacrificing security, by allowing multiple (say q) con-
tinuous packets to be encrypted by the same key. In this
case, the work for the receiver becomes qc + £cj 10, since
the receiver needs to perform f MAC operations every q
packets. Careful selection of the parameters q and f can
ensure minimal overhead work; for example, a selection
of q = 10£ results only to 1% overhead work.

5.3. Key updates
The proposed scheme does not describe a mechanism

for key updates. Once the keys are setup in the system,
they are used continuously. One may argue that we need
to periodically update the keys for increasing the secu-
rity. A public key scheme is a solution to this problem,
resulting to a hybrid scheme. Traditional HK schemes
use a public key algorithm, using a 1024 or 2048 bit key,
and transfer a symmetric key as message, usually 128 or
256 bits. This result to underutilization of communication
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bandwidth. Indeed, public key algorithms result to trans-
mission of 1024 or 2048 bits, while containing only 128
or 256 bits of useful information, that is, the key for the
symmetric algorithm.
We can group transmissions of symmetric keys to

match the size of the public key. We can peri-
odically update the keys by encrypting and sending
(ki, hi), .... (kj, hj). This information can fit in one or
more output of a public key encryption and thus result to
higher utilization of consumed bandwidth. For example,
consider the cost of transferring four new keys. In a tra-
ditional HK scheme, we need 4 x 1024 = 4096 bits for
passing 4 x 128 = 512 bits, which is 12.5% bandwidth
efficient. In our proposed scheme, we need to pass four
symmetric keys of 128 bits each and four MAC keys of
128 bits each. Thus, we need 4 x (128 + 128) = 1024
bits, which is 10O%o bandwidth efficient. Furthermore, un-
der our scenario, the receiver needs to perform only one
costly public key decryption, instead of four, which results
in less computation time and thus lower power consump-
tion.

6. Conclusions

We introduced the concept of controlled randomness
as a means to increase the security (lifetime) of ephemeral
keys. This concept allows multiple keys to be valid at any
given time, in contrast to schemes that define one key valid
at each time instance. We proposed a scheme that uti-
lizes this randomness and offers significant security gains,
while adding little overheads.
We believe that the scheme is viable and offers an alter-

native method to implement secure communication proto-
cols, while utilizing the same cryptographic primitives.
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