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Abstract

Active hardware attacks succeed in deriving crypto-
graphic secrets from target devices. They were origi-
nally proposed for systems implementing RSA, Fiat-Shamir
scheme, and Schnorr’s scheme.Common targets for these
attacks are systems used for client authentication in order
to access services, e.g., pay-per view TV, video distribution
and cellular telephony. These client systems hold secrets,
typically cryptographic keys, owned by the service provider,
and often implement the Fiat-Shamir identification scheme.
Given the strength of active attacks and the increasingly
wide deployment of client systems, it is desirable to design
proactive countermeasures for them.

In this paper we focus on the Fiat-Shamir scheme. We
prove that the conventional active attack can be easily
avoided through appropriate system and protocol config-
uration; we denote this configuration as the Precautious
Fiat-Shamir Scheme. We argue that proactive countermea-
sures against active attacks are feasible and lead to systems
that are inherently resistant to active attacks by careful pro-
tocol design, rather than ad hoc solutions.

1. Introduction

Advances in cryptanalysis have introduced a new class
of attacks, designated as side-channel cryptanalysis (origi-
nally proposed in [11]).These hardware attacks are applied
to implementations of cryptographic algorithms, and take
advantage of a side-channel, which transmits information
of the secret components of an algorithm. Hardware attacks
are classified as active or passive. Differentiation among
them lies in realization of the side-channel. In passive at-
tacks the channel is some measurable implementation pa-

�This work was done with partial support from Telcordia Technologies
(formerly Bellcore).

rameter, such as power consumption [13] [15], execution
delay of a cryptographic algorithm [12] [8] and lately elec-
tromagnetic radiation [17] [10] [16]. In active attacks, the
channel is fault insertion in data of cryptographic calcula-
tions [4] [5] [6] and can be realized, for example, by opera-
tion in extreme conditions and gate destruction [1] [2].

The Bellcore attack [6] [7], is an active hardware attack
targeting implementations of RSA using Chinese Remain-
der Theorem or Montgomery arithmetic, Schnorr’s scheme
and Fiat-Shamir identification scheme. These theoretical at-
tacks have been verified through simulation [3]. Simulation
has shown that all theoretical active attacks are complete,
with the exclusion of the Fiat-Shamir scheme, where there
is indication that, in general, there may be system configu-
rations, where the Bellcore attack is not successful.

In this paper, we introduce the concept of proactive coun-
termeasures for active hardware attacks. Specifically, we
demonstrate that a device can implement a cryptographic
protocol in a fashion that prevents leakage of secret infor-
mation, even in the presence of faulty computations. In our
work, we focus on the Fiat-Shamir scheme, due to its pop-
ularity. We prove that the Bellcore attack is based on an
assumption that is not always true: one can always con-
struct a full-rank ` � ` matrix over Z2. Using this fact, we
prove that a careful implementation (or configuration) of the
scheme can protect secrets from leaking out of a device.

The paper is organized as follows. Section 2 describes
the Fiat-Shamir identification scheme and the Bellcore at-
tack. Section 3 introduces a configuration of the Fiat-
Shamir protocol, called Precautious Fiat-Shamir scheme,
which defends against the attack, and proves its correctness.
Section 4 introduces an extension of the Bellcore attack,
which is successful against Precautious Fiat-Shamir, but re-
alistically infeasible in resource-limited environments, such
as smart-cards. Finally, we analyze the concept of proac-
tive countermeasures for active hardware attacks, and argue,
based on the development of Precautious Fiat-Shamir, that
such countermeasures are feasible and lead to systems that
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are inherently resistant to active attacks by careful protocol
design, rather than by ad hoc solutions.

2. Background

2.1. Fiat-Shamir Identification Scheme

The Fiat-Shamir identification scheme [9] is a zero-
knowledge authentication scheme, where one party, say Al-
ice, authenticates her identity to another, say Bob, using an
asymmetric method based on a public key.

The scheme works as follows. Alice has a n-bit mod-
ulus N , where N is the product of two large prime num-
bers, and a set of invertible elements s1; s2; : : : ; s` mod N .
Alice’s public key is the set PK` = fui j ui =
s2i mod N and 1 � i � `g. Alice proves her identity to
Bob using the following communication protocol:

1. Alice and Bob agree on a security parameter, t � `;

2. Alice picks a random number r 2 Z
�

N, calculates
r2 mod N and sends the result to Bob;

3. Bob chooses a random subset S � f1; : : : ; tg and
sends S to Alice;

4. Alice computes y = r �
Q

i2S si mod N and sends y
to Bob;

5. Bob verifies Alice’s identity by checking that the fol-
lowing holds: y2 = r2 �

Q
i2S ui mod N

The security of the scheme is based on the hypothesis that
computation of square roots is a hard problem over ZN.

2.2. The Bellcore attack on Fiat-Shamir Identifica-
tion Scheme

The Bellcore attack [6] [7], is a theoretical active attack
model that exploits erroneous cryptographic computations.
The attack models derive secret keys for various crypto-
graphic protocols. In the case of Fiat-Shamir identification
scheme, Bob using Bellcore attack can derive Alice’s secret
elements, s1; : : : ; s` mod N . The attack assumes that it is
possible to introduce transient bit flips during Alice’s com-
putations. Specifically, Bob introduces bit flips in r, dur-
ing Step 3 of the communication protocol described above,
while Alice waits for Bob to send the subset S. Then, Al-
ice’s computation in Step 4 is made with an incorrect value
of r. This leads to Bob’s ability to calculate Alice’s secret
elements, as we describe briefly below.

It is interesting to note that, in this case, the attacker
solves the time isolation problem, which constitutes a sig-
nificant difficulty in the implementation of active attacks.

Specifically, the attacker (Bob) does not need exact syn-
chronization with the device that acts as Alice, because the
attacker can delay transmission of the subset S arbitrarily.
So, the attacker needs to solve only the space isolation prob-
lem, i.e., he needs to locate the correct memory location
that stores r, in order to introduce the transient bit flip. For
shake of simplicity, we assume in the following that a single
bit flip occurs. The Bellcore attack on Fiat-Shamir identifi-
cation scheme is summarized in the following theorem:

Theorem 1 (Bellcore attack) Let N be an n-bit modulus
and ` the predetermined security parameter of the Fiat-
Shamir protocol. Given ` erroneous executions of the proto-
col one can recover the secret s1; : : : ; s` in the time it takes
to perform O(n`+ `2) modular multiplications.

Proof 1 (summarized) A bit-flip in r at position i,changes
its value by E = �2i; the sign denotes whether the bit-
flip caused a 0-to-1 or a 1-to-0 change. When the bit-flip
occurs, Alice calculates (and sends Bob) an incorrect value
of y, denoted as ŷ, during Step 4 of the protocol:

ŷ = (r +E) �
Y
i2S

si

From this, Bob can compute

T (S) =
Y
i2S

si =
2E � ŷ

ŷ2Q
i2S

ui
� r2 +E2

mod N

Bob validates the correctness of his bit-flip guess by check-
ing that T 2(S) =

Q
i2S ui This step requires O(n + `)

modular multiplications, since Bob must try all possible bit
error positions, as to detect the position where the bit flip
occured. Thus, for ` different sets S, O(n` + `2) modular
multiplications are required.

Since we have a method to compute T (S) for various
sets S, we need an algorithm to derive each s1; s2; : : : s`.
If Alice accepts singleton sets, then the algorithm is trivial:
Bob can choose S = fkg and then, T (S) = sk. Thus, Bob
needs only ` iterations to collect all ` possible si’s.

However, if Alice does not accept singleton sets, Bob can
follow the following algorithm. Bob can map each set S to
its characteristic binary vector U 2 f0; 1g`, i.e. Ui = 1 if
i 2 S. Now, if Bob can construct an ` � ` full rank matrix
overZ2, then Bob can derive each si. For example, in order
to determine s1, Bob constructs elements a1; a2; : : : ; a` 2
f0; 1g, so that

a1U1 + : : :+ a`U` = (1; 0; 0; : : : ; 0) mod 2

This is efficient, because vectors U1; : : : ; U` are linearly in-
dependent over Z2. When computations are made over the
integers, we have:

a1U1 + : : :+ a`U` = (2b1 + 1; 2b2; 2b3; : : : ; 2b`)
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for some known b1; : : : ; b`. Then, Bob calculates s1 as:

s1 =
T a1
1 � � �T a`

l

ub11 � � �ub``
mod N

The calculation of s1 requires O(`) modular multiplica-
tions, and thus, the calculation of all s1; s2; : : : ; s` requires
a total O(`2) modular multiplications. Overall, the entire
algorithm requires O(n`+ `2) modular multiplications.

3. Defense against Bellcore attack

The original proof of the Bellcore attack [6] identifies
that the Fiat-Shamir identification scheme breaks very eas-
ily when jSj = 1, i.e., when Alice accepts singleton index
sets, and assumes that it is reasonable for Alice to deny to
accept such singleton S sets. However, it presents the at-
tack described above, which derives Alice’s secret elements
even when Alice accepts index sets S with jSj � 2.

The ability to have Alice deny singleton S sets moti-
vated our work: we introduce the concept that Alice may
be able to judge and/or decide what sets S to accept. So, we
evaluate the Bellcore attack under the assumption that Alice
accepts specific sizes for the index sets S. Our evaluation
originates from the claim in the proof of Theorem 1 that a
full rank matrix can be always constructed over Z2.

3.1. Preliminary results

Assuming that Alice accepts only specific sizes for S, in
the following, we denote the set of acceptable (by Alice)
sizes for the index set as G = fn1; n2; : : : ; nkg.

Using this notation, one can easily verify that, for even `
and f2; `� 1g � G, the following matrix Be of character-
istic vectors constitutes a full rank matrix over Z2:

Be =

2
666664

b1
b2
...
b`�1
ble

3
777775
=

2
666664

1 0 : : : 0 1
0 1 : : : 0 1

. . .
0 0 : : : 1 1
1 1 : : : 1 0

3
777775

Accordingly, for odd ` and f2; `g � G the matrix Bo of
characteristic vectors constitutes a full rank matrix overZ2:

Bo =

2
666664

b1
b2
...
b`�1
blo

3
777775
=

2
666664

1 0 : : : 0 1
0 1 : : : 0 1

. . .
0 0 : : : 1 1
1 1 : : : 1 1

3
777775

In conclusion, the Bellcore attack is effective, under
these assumptions since one can always construct a full rank
matrix.

However, it is possible to choose G in such a way, so
that it is impossible to construct a full-rank matrix; this
renders Bellcore attack ineffective. As an example, con-
sider the case where l = 3 and G = f2g; in this case
f2; `g 6� G. For this example, there are only three pos-
sible vectors: (1; 0; 1); (0; 1; 1) and (1; 1; 0). Furthermore,
over Z2, (1; 0; 1) + (0; 1; 1) = (1; 1; 0). Hence, the “only”
possible `� ` matrix

2
4

1 0 1
0 1 1
1 1 0

3
5

has rank 2 and not 3 as required for Bellcore attack to be
effective. So, the Bellcore attack is not effective in this case.

The analysis above indicates that there exists a relation-
ship between the Hamming weight of the characteristic vec-
tors, w(u) =

P
ui and the rank of the matrix they can for-

mulate. In the following, we establish this relationship. For
our analyses we denote as V2(`) the set of vectors ofZ`

2with
even Hamming weight. First, we prove two propositions.

Proposition 1 8a; b 2 Zn
2, w(a � b) is even, if w(a); w(b)

are both even or both odd and odd, otherwise.

Proof 2 The sum of two binary vectors a; b is the exclusive-
OR (xor) of a; b. So, the Hamming weight of a� b is:

w(a � b) =

nX
i=1

�
aib

0

i + a
0

ibi
�
=

=

nX
i=1

�
ai(1� bi) + (1� ai)bi

�
=

= w(a) + w(b)� 2

nX
i=1

aibi

Since 2
Pn

i=1 aibi is even, w(a � b) depends only on w(a)
and w(b). If they are both even or both odd, then their sum
is even and so is w(a � b). If this is not the case, then their
sum is odd and so is w(a� b).

Proposition 2 V2(`) is a subspace of Z`
2. Its dimension is

dim(V2(`)) = `� 1.

Proof 3 The space of Z`
2 is defined as < Z

`
2;Z2;�; � >,

where � denotes the exclusive-OR operation. V2(`) is a
subspace, since for each u; v 2 V2(`):

� (0; : : : ; 0) 2 V2(`);

� u� v 2 V2(`), by proposition 1;

� 0 � u = (0; : : : ; 0) and 1 � u = u are in V2(`).
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The set of vectors b1; b2; : : : ; b`�1, that is the ` � 1 first
rows of Be and Bo, are linearly independent:

b1 = (1; 0; 0; : : : ; 0; 1)

b2 = (0; 1; 0; : : : ; 0; 1)

b3 = (0; 0; 1; : : : ; 0; 1)

...

b`�1 = (0; 0; 0; : : : ; 1; 1)

Considering a vector a = (a1; a2; : : : ; a`) of V2(`), one can
express this vector as a linear combination of bi’s:

a = a1b1 + a2b2 + : : :+ a`�1b`�1

Although the sum includes only (`� 1) vectors bi, 1 � i <

`, and the value a` is not used in the calculation, the sum
results in a correct value for a`:

� if a` = 1 then w((a1; a2; : : : ; a`�1)) is odd. Given
that bi(`) = 1 for every bi, 1 � i < `, the sum adds
an odd number of 1’s in the last (`-th) position. Thus,
a` = 1, as required.

� if a` = 0, then w((a1; a2; : : : ; a`�1)) is even. Given
that bi(`) = 1 for every bi, 1 � i < `, the sum adds
an even number of 1’s in the last (`-th) position. Thus,
a` = 0, as required.

Thus, in conclusion, the set fb1;b2; : : : ;b`�1g contains
` � 1 linearly independent vectors, which span V2(`). By
definition, these vectors form a basis of the subspace and
its dimension is `� 1.

3.2. The “Precautious Fiat-Shamir Scheme”

We define a variation of the original Fiat-Shamir identi-
fication scheme, which changes slightly the third step (Step
3) of the communication protocol used in the Fiat-Shamir
scheme. The new scheme is defined as follows:

Definition 1 (Precautious Fiat-Shamir Scheme) A Fiat-
Shamir Identification Scheme augmented with a set G of
even numbers is called precautious, if Alice accepts on the
third step only S, such that jSj 2 G.

By definition, if it could be G = f1; 2; : : : ; `g, then the
scheme is the original Fiat-Shamir identification scheme. If
G � f1; 2; : : : ; `g, we argue that the scheme offers equiva-
lent security as the original one. The security of the scheme
is solely based on the difficulty of factoring a product over
ZN and on the diffusion effect of the random number r. The
original scheme’s security is not based on the exact num-
ber of factors of a given product. The defined Precautious
Fiat-Shamir scheme does not disclose any selection of an

individual si, but rather limits the total number of factors of
a protocol reply y. Furthermore, there is no known work,
where the total number of factors of a number overZN pro-
vides any evidence of the factors themselves.

The Precautious Fiat-Shamir identification scheme pro-
vides good defense characteristics against Bellcore attack,
as proven in the following theorem:

Theorem 2 (Defense against Bellcore attack) If Alice im-
plements Precautious Fiat-Shamir Identification Scheme,
then Bellcore attack is not effective.

Proof 4 Bellcore attack is effective when one can construct
an `�` full rank matrix using as columns (or rows) elements
of V2(`). According to Proposition 2, V2(`) has dimension
`�1. Thus, any ` vectors from V2(`) are linearly dependent,
and use of any such ` vectors as rows (or columns) in an
`� ` matrix, results to a matrix rank at most `� 1.

4. Strength of Precautious Fiat-Shamir

4.1. Extension of the Bellcore attack

We proved that the Bellcore attack is unsuccessful, since
a device that judges the nature of challenges can defend
against it. The new set of acceptable challenges, V2(`), is
approximately half of Z`

2. Thus, the probability of imper-
sonation is reduced by a factor of two and becomes 2�`+1.
However, with this slight modification, the Bellcore attack
can not derive Alice’s secret elements, s1; : : : ; s`.

Since G contains even numbers, the set of acceptable
challenges will be a subset of V2(`). Following the method-
ology of the Bellcore attack, one could give challenges such
as their characteristics vectors to be linear independent. By
Proposition 2, such a set of vectors exists and ` � 1 erro-
neous executions of the protocol will suffice to impersonate
Alice. Thus, a simple adaptation of the Bellcore attack to
the new space, V2(`), is enough to impersonate Alice.

In Section 3, we provided an implementation configura-
tion for the Fiat-Shamir scheme,which defended against the
Bellcore attack. Here, we apply the extended attack to this
example and demonstrate its success.

In this case, ` = 3 and G = f2g, thus GS = 3. Alice can
produce three products in total: s1s2; s1s3; s2s3. With-
out loss of generality, we assume that, after two erroneous
protocol invocations, the first step of the extended Bellcore
attack has derived s1s2 and s1s3. Then, in the second step,
we compute the remaining product as follows. As the char-
acteristic vectors (1; 1; 0) and (1; 0; 1) are linearly indepen-
dent, we can express: (0; 1; 1) = a1(1; 1; 0) + a2(1; 0; 1);
so, a1 = a2 = 1. Respectively, we can compute
b1 = 1; b2 = 0; b3 = 0. So, we derive s2s3:

(s1s2)
a1(s1s3)

a2

ub11 u
b2
2 u

b3
3

=
s21s2s3

u1
mod N = s2s3 mod N
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So, after two erroneous protocol invocations, we have all
possible replies that Alice can produce (recall that Alice
controls the random number r in the first step of the pro-
tocol). So, we can impersonate Alice successfully, although
she implements the Precautious Fiat-Shamir scheme.

4.2. Issues in impersonation of smart cards

We consider the case where a smart card acts as Alice in
the Precautious Fiat-Shamir Scheme. Assume that Bob has
already initiated the extended Bellcore attack successfully.
So, Bob is in possesion of pairwise products sisj of Alice’s
secret keys. Bob’s next task is to construct a smart card that
can be authenticated as Alice.

One way to achieve this, is to program a new smart
card, so that it can produce any possible reply in real time,
given the ` � 1 linear independent vectors. An authenti-
cating device can detect such an impersonating smart card
by measuring the response time between a challenge and its
response (Step 4 of the Fiat-Shamir scheme, as described
in Section 2). In impersonating smart cards, this response
time is quite long, because there is need for additional op-
erations, specifically modular multiplications. For exam-
ple, consider the case where ` = 9 and the challenge is
S = f1; 2; 3; 6; 7; 9g. Given the vectors of Proposition 2,
an impersonator needs to perform one extra modular mul-
tiplication, relatively to a legitimate card’s operations. As
modular multiplication is quite time-consuming in a smart
card, especially when not equipped with a cryptographic co-
processor, such long time delays can be a serious indication
of a malicious card’s presence.

Alternatively, Bob can precompute all possible re-
sponses and load them to the smart card. This is equivalent
to producing all vectors of V2(`), given the ` � 1 linear in-
dependent vectors of Proposition 2. Given that ` is usually
small, one can argue that it is feasible to compute them, al-
though the size of V2(`) is exponential to `. However, smart
cards have limited memory resources, and thus, it is not fea-
sible to store all these responses with the appropriate choice
of ` (in conventional smart cards, Bob would fail for ` � 5).

In conclusion, the fact that Bob cannot possess each se-
cret key of Alice, s1; s2; : : : ; s`, but possesses pairwise key
products, places sigificant obstacles for a realistic imperson-
ation in smart card environments. For successful attacks, it
is clearly desirable that the attacker obtains every si.

5. Proactive Countermeasures

In Section 4, we showed that the Fiat-Shamir Identifi-
cation Scheme can defend against known active attacks,
if properly implemented. In this section, we consider the
problem of developing countermeasures for active attacks.

Up to date, there is no published practical implementa-
tion of active attacks for any algorithm or protocol. How-
ever, this should not discourage the development of appro-
priate countermeasures, because there are claims that the
pay-TV hacking community has been using such techniques
for some time [1] [2].

A common approach to defeat active attacks is double
computation, i.e. devices compute twice and compare all
encrypted information before they transmit it. In resource-
limited environments, such as smart card systems, this is
not efficient, because it doubles the protocol execution time.
Furthermore, in multi-round authentication schemes, dou-
ble computation is not feasible, because the device uses
random number(s) in computations and thus, there can be
no comparison between results, even in correct computa-
tions [6].

Other approaches include result verification, protec-
tion of memory with parity bits and blinding or random
padding [4]. Result verification is not always feasible and
depends on the size of the keys and the nature of the under-
lying mathematical problem [4] [14]. Protecting memory
with parity bits defeated differential fault analysis [5], but
resulted in a more efficient and realistic attack [2]. Among
these approaches, the only successful and practical ones are
blinding and random padding, as demonstrated for RSA
systems [4]. Importantly, these methods belong to the cate-
gory of proactive countermeasures.

Considering the effectiveness of Precautious Fiat-Shamir
and the success of other proactive countermeasures (blind-
ing and random padding), it becomes clear that cryptosys-
tems can be designed with embedded proactive countermea-
sures. Proactive countermeasures are any technique incor-
porated to a cryptosystem that proactively protects secret
key leakage, in case of side-channel attacks. However, there
are two significant requirements for the implementation of
such countermeasures: (i) they must not introduce perfor-
mance penalty (as double computations do), and (ii) they
must not degrade the security level of the cryptosystem (as
parity bits did in the case of differential fault analysis).

6. Conclusions-Future work

The Bellcore attack against systems implementing the
Fiat-Shamir identification scheme is based on the assump-
tion that the construction of a full rank ` � ` matrix over
Z2 is always possible, where ` is the number of Alice’s se-
cret elements. We have proven formally that, the construc-
tion of such a full rank matrix is not always possible. We
have introduced the Precautious Fiat-Shamir Identification
Scheme, a modification of the original scheme, which ren-
ders the attack unsuccessful. Considering the properties of
Precautious Fiat-Shamir and the effectiveness of alternative
proactive countermeasures, we argue that proactive coun-
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termeasures against active hardware attacks are feasible and
lead to systems that are inherently resistant to active attacks
by careful protocol design, rather than ad hoc solutions.
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