
When Security Meets Usability: 
A User-Centric Approach on a Crossroads Priority Problem 

Christos A. Fidas 
Human-Computer Interaction Group 

University of Patras 
Patras, Greece 

e-mail: fidas@ece.upatras.gr 
 

Artemios G. Voyiatzis 
Industrial Systems Institute 

Research Center “ATHENA” 
Patras, Greece 

e-mail: bogart@isi.gr 
 

Nikolaos M. Avouris 
Human-Computer Interaction Group 

University of Patras 
Patras, Greece 

e-mail: avouris@upatras.gr 
 

Abstract— Effective and efficient methodologies are essential 
for developing and maintaining information systems that are 
both secure and usable, especially in the case of Internet 
applications that require a combined effort from application, 
system, network, security, and human-computer interaction 
design areas. In this paper, we propose a user-centric approach 
towards achieving “usable security”. As a case study we apply 
the proposed approach on the password management problem. 
Our work demonstrates that the “user-centric usable security” 
is a viable and promising future research direction. 

Keywords-security; usability; HCI; user-centric design 

I.  INTRODUCTION 
The ever increasing dependence of the developed world 

on digital transactions for everyday life drives the need to 
streamline efforts on designing systems that are both secure 
and usable. In the era of computing, digital communication, 
and e-commerce, the security is still considered as 
orthogonal to usability in too many cases. A common 
statement is: “if it is secure, then it is not usable” e.g., a 
secure password is hard to remember and an easy-to-
remember password is not secure. In this context, there is an 
increasing agreement lately on the need to design secure and 
usable computer systems. Interdisciplinary research on the 
emerging field of “HCI-SEC” (Human-Computer Interaction 
and Security) brings together researchers of the two fields 
towards developing “usable security”. 

In this paper we argue that system designers involved in 
“usable security” are at a crossroads. They try to reach a 
difficult compromise: provide a highly usable system to the 
users and at the same time protect the assets of the provider, 
even by exposing, sometimes, the users to security threats. 
This commonly applied approach results often in 
overloading the user with not task related feedback, as 
priority is given to protecting the provider over the users. 
The users perceive security as someone else’s problem and 
due to this, make poor decisions related to security issues, 
considering them irrelevant to their main tasks. This 

approach introduces more security problems to them and the 
system. The loop closes as the designers introduce more 
security features in order to protect the system from the 
users. The net outcome is that designers keep developing a 
system with security for the provider and usability for the 
user. Thus, security reaches the user as an off-task issue, as a 
side-effect, and it is not convincingly considered as “usable 
security”. 

A possible method to overcome this still open and 
important issue is to apply a user-centric approach towards 
developing information systems with “usable security”.  
User–centric approaches are widely used, especially in cases 
where user requirements are difficult to elicit and to 
understand. These approaches put the end-users at the center 
of the software development cycle and aim to achieve a 
common understanding among the designers and the users, 
related to the software under development. The objective is 
to reach a certain point in which the designers and the users 
share a common conceptual ground related to the developed 
system e.g. sharing a common mental model of using it. 
Mental models have been studied by cognitive scientists as 
part of efforts to understand how humans know, perceive, 
make decisions, and construct behavior in a variety of 
environments. A mental model is an internal scale-model 
representation of an external reality e.g., the information 
systems and their functionalities. It is built on-the-fly, from 
knowledge of prior experience, schema segments, 
perception, and problem-solving strategies but it also 
maintained and refined [15].   

Therefore, our proposal is to apply a user-centric 
approach in designing information systems with “usable 
security”. Our aim is to make users perceive security as an 
important part of their interaction process by creating and 
maintaining or refining appropriate mental models of 
interactions. Thus, both usability and security are focused on 
user needs; as protection of the providers’ assets comes 
second to them. 

The paper is organized as follows: In Section II, we 
review existing literature in the area of HCI-SEC. We 

2010 14th Panhellenic Conference on Informatics

978-0-7695-4172-3/10 $26.00 © 2010 IEEE

DOI 10.1109/PCI.2010.17

112



develop our theoretical framework and problem formulation 
in Section III. We propose a user-centric approach for 
solving the problem in Section IV and validate our proposal 
in Section V by describing how it can solve the password 
management problem. Finally, we reach our conclusions and 
describe promising directions of future work in Section VI. 

II. USABLE SECURITY 
Since the early days of computing history, access to 

computing facilities was considered as a privilege that must 
be controlled. It was a natural approach given the aims of 
building such computing machines those times. Even when 
these facilities became more widely available, funding 
stakeholders and managers insisted on policies and 
mechanisms for controlling access to their investments [1]. 

Since then, security has evolved under the assumption of 
protecting the system resources (and later on the network 
too) from outsiders and misbehaving users. Over the time, 
computing devices and networks witnessed wide acceptance 
and evolved into everyday life tools for ordinary users to 
perform their job at hand with little or no training at all. 

Since the late 1990s and Internet’s exponential growth, 
there is an increased interest in designing systems that can be 
both secure and usable. Such designs must take into account 
the user needs [2]. However, early evaluation of secure 
applications showed a significant usability gap for the 
average user [3].  The emerging area of HCI-SEC studies the 
interrelated security and HCI requirements of system and 
application design. The Computing Research Association 
identified HCI-SEC as one of the “Four Grand Challenges in 
Trustworthy Computing” in early 2000s [4]. 

The literature review reveals four areas of interest at the 
crossroads of HCI and security: i) user authentication, ii) 
secure interface design, iii) usability of security products, 
and iv) protection of systems using CAPTCHA techniques. 
We review work in these areas in the following. 

A. Passwords, Secrets, and other Forms of Authentication 
Passwords, passphrases, and personal identification 

numbers (PIN) are used widely for user authentication and 
access control in computer systems. They are also generating 
the most frustration to both users and system owners. Users 
prefer easy-to-remember passwords that can be reused in 
many places [5]. They are disturbed when system policies do 
not accept their preferred password or oblige them to change 
it frequently. Users tend to forget their passwords. They 
require help to recall or reset it, either from other humans or 
by writing them down in paper or in notes next to the screen. 

System owners and managers are passionate about their 
systems and the value they bring. Thus, they enforce policies 
that ensure maximum protection of their assets. Being 
technology savvy, it is hard for them to tolerate poor 
password selection and to understand users’ need to write 
down the secret passwords as not to forget them. 

The password problem is often used as an example of the 
opposition between security and usability: security dictates 
hard-to-guess passwords while usability dictates easy-to-
remember passwords. We shall formulate this problem in the 
next section and further show that this is not an opposition 

between security and usability but rather between users and 
providers. 

B. Interface Design and Security Indicators 
Electronic mail protocols were not designed with security 

in mind; the initial goal was to allow fast communication of 
messages over the Internet infrastructure. The 
commercialization of Internet results in the need for 
encrypting or signing electronic messages (or both). Whitten 
and Tygar experiments in 1999 [2], reveal that even educated 
and experienced email users did not manage to send a secure 
email within 90 minutes of time. A repeated study by 
Garfinkel and Miller in 2005 [6], highlighted the continuing 
problems even after interface improvements. 

Masone and Smith [17] note two more problems that 
users face on secure email applications based on digital 
certificates, certification authorities, and public key 
infrastructures, due to contradicting mental models in real 
and digital life: a) should the recipient doesn’t have installed 
the CA certificate of the sender, the interface dictates not to 
trust the sender although trusted in real life and b) the 
interface dictates the user to trust any signed message 
regardless of who certifies the sender thus, enforce trust even 
for people the recipient does not trust in real life. 

Electronic commerce services mix real life activities with 
digital transactions, mainly of monetary value. Book or 
music purchases through Internet and online payments of 
bills and taxes are typical examples of such a mix. Even with 
strong (financial) incentives, users tend to ignore security 
indicators, such as absence or invalidity of SSL certificates 
[7]. However, the average user cannot easily detect and 
understand this practice and its consequences [8]. Finally, 
current trend of outsourced web services results in users 
being redirected to third-party sites for completing payments 
or other sensitive operations. This further hardens user 
efforts to build trust on a web site and to comprehend the 
involved security risks [9]. 

A common metaphor from the physical world is the 
notion of letters, documents, and books, mirrored to emails, 
e-document, and e-books. In the physical world, all these are 
just paper and ink, a harmless combination. In the digital 
world these objects are actually active, executable code 
augmented with rich user interfaces and advanced software 
capabilities. The misconception presented to the users may 
result in harming users and in privacy invasion [9]. 

Built-in security is considered as a convenient approach, 
since it can hide all the complexities of security from the 
user. Eventually, the user has to interact with the security 
options of an application. Thus, at least one more technique, 
like tutorial or context-sensitive help, is needed [16]. 

C. Usability of Security Products 
The usability of security products, such as firewalls and 

antivirus software, requires special attention from both 
usability and security point of view. There is an inherent 
difficulty on implementing security correctly in the first 
place; a deep understanding of the internals of a system is 
needed to make wise and safe choices. However, ordinary 
users are expected to actually tackle security issues to protect 

113



both the system and themselves. Typical applications tend to 
seldom ask for a user decision on a security issue. On the 
other hand, security software requires continuous vigilance 
from the users; they are almost asked to become security 
experts themselves. Each decision must be correct straight 
from the first time or else users can compromise their 
privacy and system’s security [16]. 

Johnston et al. are proposing six design criteria that once 
met lead to "trust" [10]: convey features; visibility of system 
status; learnability; aesthetic and minimalistic design; errors; 
and satisfaction. Trust is one of the ten usability criteria for a 
successful HCI according to Jacob Nielsen [11]. Herzog and 
Shahmerdi [16] are concluding on four usability 
requirements for security applications or security features of 
applications i) they make users reliably aware of the security 
task they need to perform, ii) they make users able to figure 
out how to successfully perform those tasks, iii) they do not 
allow users to make dangerous errors, and iv) they make 
users sufficiently comfortable with the interface as to 
continue using it. These requirements can be considered a 
condensed form of Yee’s ten design guidelines for secure 
interface design [18]: Path of least resistance, Active 
authorization, Revocability, Visibility, Self-awareness, 
Trusted path, Expressiveness, Relevant boundaries, 
Identifiability, and Foresight.  

D. Usability of CAPTCHA 
“Completely Automated Public Turing Test to Tell 

Computers and Humans Apart” (CAPTCHA)  refers to a 
software that generates and verifies challenge puzzles or tests 
that a computer cannot solve automatically but a human 
being is able to. In general, the aim of CAPTCHA software 
is to minimize intentional or unintentional denial-of-service 
attacks on heavy-use web sites and applications that are 
caused by massive, rapid, automated service requests. For 
example, CAPTCHA can be used to stop a bot registering for 
accounts in free hosting services or to delay login retries for 
breaking into a password-protected web site.  

The usability of CAPTCHA receives lately attention, 
since it gains wide adoption and requires active user 
participation and cooperation. There are three types of 
CAPTCHA, based on the challenge they present: text, audio, 
and image. Yan and El Ahmad [14] provide evidence that 
non-Latin alphabet users can have a hard time solving 
CAPTCHA puzzles. Further, they find that the length of 
challenge strings and the colors used on the challenge 
(background and characters) can have impact on usability, on 
security, or on both of them. Hernandez-Castro and 
Ribagorda [12] conclude that CAPTCHA lacks “a 
methodological analysis and design of the schemes placed in 
production”. 

III. THE CROSSROADS PRIORITY PROBLEM 
The analysis in the previous Section leads to a problem 

formulation layered in two levels. At the first level, we argue 
that the system designers are facing contradicting 
requirements but not on the traditional form. From one side, 
system stakeholders are concerned about the security of the 
system and are willing to sacrifice the convenience of the 

users in order to achieve system security. For example, 
considering the problem of CAPTCHA, this is not a problem 
of the user, but of poor system engineering; the system 
should be engineered in such a way that it should not allow 
massive registration in a short time anyway. However, the 
problem is passed back to the users, hampering the usability 
of the system by requiring them to solve puzzles. 

On the other side, users are interested in the usability of 
the system. Current engineering practices result in adding 
security as an extra layer in the design and not in 
incorporating the security in the whole software design 
process. Additionally, from a usability point of view, 
security indeed looks like an add-on: something added later 
on to solve somebody else’s problem, as the system is almost 
always usable even without the security layer. As a 
consequence, the security does not feel “natural” to the 
application.  

At the second level, security mechanisms are closer to 
technical issues rather than user needs. This results in many 
misunderstandings and in confusion for the user. There are 
proposals for “invisible security” i.e., implementations that 
hide the security from the users. However, it is not possible 
to hide each and every security parameter from the user. The 
aforementioned argument is stronger for security products, 
like firewalls and antivirus software, which need to be 
adapted to user needs and preferences. In this case, the 
problems are: i) the security terms are not clearly 
communicated to the users, ii) interfaces do not explain the 
problem the users may face by choosing each alternative 
option, and iii) explanatory texts lack clear statement and are 
vague and ambiguous on purpose, in order to cover each and 
every possible (or impossible) case. If the system designers 
cannot estimate the risk of a security decision, it often 
suffices for them to use vague statements like “action may 
result in loss of information”. It is however unfair to expect 
from a casual user to understand the risk involved, evaluate 
it, and reach a conclusion. The system must take stand and 
actually explain to the user the involved risks; the default 
action must be the one that most protects the users rather 
than exposes them to threats. 

Garfinkel and Spafford [13] give the definition: “A 
computer is secure if you can depend on it and its software to 
behave as you expect”. This definition embraces the 
relationship between the security properties of a system, the 
users and the context of use.  As a consequence, designing 
for “usable security” turns to be a problem that needs to be 
customized for a specific group of users and within a certain 
context of use. We argue that “usable security” must not only 
refer to good interface design but must include the creation 
of system mental models that embrace security as an 
essential aspect of user interaction. 

The crossroads priority problem can be stated as follows: 
“how can we establish information system design processes 
that lead to secure and usable user interfaces designs in the 
cases that security must be communicated to end-users?” We 
believe that user-centered design approaches can solve the 
problem. Our approach differentiates and complements the 
ideas presented so far since the security focus is not on 
assisting the user to protect the system but it is rather on 

114



protecting the security of the user. We further elaborate on 
this view in the next sections, using the example of users 
selecting, using, and changing passwords. 

IV. A USER-CENTRIC APPROACH 
We propose a user-centric approach to the design of 

secure and usable security; the security must primarily 
address user needs and aims rather than system’s or 
developer’s needs. This user-centric approach urges security 
and usability experts to work closely from the early phase of 
system design, aiming at presenting security in a clear and 
concise manner. 

User-centered design approaches focus on involving the 
end-users in the process, especially for identifying and 
validating user requirements as well as for evaluating system 
prototypes. They aim to investigate thoroughly users’ views 
and how the system can support them in accomplishing 
specific tasks effectively, efficiently, and with a certain 
degree of user satisfaction. 

An important aspect of this process is to model user 
interaction with the user interface. A good design practice 
aims to establish a common ground between designers and 
users, related to aspects of user-system interaction. A well-
used and simple approach to modeling interactive systems is 
to describe the stages of actions users go through when 
performing a certain task. According to Norman [19], there 
are seven steps in a typical interaction cycle with a system: 
form the goal and the intention, specify and execute the 
action sequence, perceive and interpret the system state, and 
finally evaluate the state with respect to the goals and 
intentions.  

First, the users form a conceptual intention from their 
goal (example: the user wants to access her e-banking 
account). Second, they try to adapt the intention to the 
commands provided by the system (example: explore the 
Web page to figure out how to realize the intention) and 
from these, user-perceived, commands the users carry out the 
action. Then, the users attempt to understand the outcome of 
their actions by evaluating the system response. The last 
three stages help the users develop their idea of the system. 
The whole process is repeated in cycles of action and 
evaluation. The users refine the model of the system they 
have in mind by interpreting the outcome of their actions. 

An important aspect of user interface design related with 
security issues is whether security is a primary goal of a user 
or a side effect of the task. For example, if the primary goal 
of the users is to access their e-banking account, then 
security is a side effect; if the users are configuring their 
firewall, then security is their primary objective. 

The users focus on primary than on secondary goals. 
Thus, user interface designers should not assume that users 
will put much cognitive effort in understanding security 
issues. Users assume that the security is not related to their 
task but is rather a system-oriented and automated process. 
As a result, from a user point of view, security is perceived 
more as system problem rather than as an application design 
issue which involves user contribution as well. 

Poor practice of “usable security” ignores the fact that 
users develop mental models related to their interaction with 

the system. Once these models are created, then the users 
interact with the system in more automated ways, faster, and 
more efficiently. Changing these interactions because of 
security concerns, often forces the users to follow erroneous 
interaction sequences. These often entail more security risks 
than those which they wanted originally to avoid. For 
example, many e-banking applications force their users to 
change once in a while their password for security reasons. 
This results in a high percentage of users not being able to 
login the next time since their mental models continue to use 
the old password associated with the system of use. A natural 
reaction is that users write down their passwords on files or 
stickers as they cannot remember their current active 
password. Another similar example is the “keep me logged 
in” functionality offered by many web applications. The 
users remain automatically connected for a certain period of 
time. Then, suddenly and without any prior notice, they are 
disconnected and forced to connect again. This is also a poor 
design in terms of “usable security”. 

V. A USER-CENTRIC EXAMPLE ON PASSWORD CHANGE 
Password management is considered for a long time now 

as the cornerstone of usable security. There have been 
enormous efforts to educate users in choosing and using a 
secure password. However, users keep on using the same, 
simple password over and over again. 

Best practices for security, propose users to change their 
password often in order to minimize the possibility that 
someone with enough time and resources breaks into their 
account. Until now, the most common system engineering 
approaches on the password change problem involve one of 
the following two options: either (i) never notify the user 
about the risk or (ii) suddenly force the user to choose a new 
password, based on some policy, like not allowing the old 
password or recent passwords to be reentered. We call these 
two options “always off” and “instant on” respectively. 
While institutional policies may dictate ahead of time the 
password change frequency (e.g. once a month), we still 
consider it an “instant on” case, since the system does not 
notify the users in advance for the upcoming action but 
suddenly notifies them for password change. 

We can now discuss how the user-centric design 
approach can solve efficiently this problem. A user-centric 
approach incorporates the password change as a regular user 
task throughput the usage of the system. We consider this as 
an “always on” approach. This approach can be realized as 
follows, for an example web application. 

Upon creation of an account, the application provides a 
tooltip on password selection and allows the users to choose 
any password they like. User interface elements like “tip of 
the day” regularly provide user insights to users on current 
system password policies, like how many days are left to 
change password, and on the advantages for the user on 
periodic password change and choosing strong passwords. 
This approach achieves three objectives: a) allows the user to 
directly start using the system, b) educates users over time on 
the advantage of frequent password change and on current 
system policy, and c) puts the user on a mental model that 

115



password needs periodic refreshing. Thus, they can be 
mentally prepared on time for password change. 

Once the users increase the amount of time spent on the 
application and the volume of valuable data produced, the 
system adapts to this behavior and gradually notifies the user 
that the initial password is too weak to protect their assets 
and should opt for a new, stronger one. This approach allows 
users to understand and estimate their risk, since it is based 
on realistic usage data. The idea here is that the more the 
users use the system, the more incentives they have to 
protect their identity and digital assets and thus, be more 
receptive to password change. The main observation here is 
that the password change does not occur after a fixed amount 
of time e.g., after 180 days, but rather after enough actual 
usage of the system. This approach has the nice side-effect 
that users that seldom use the system are not burden with a 
lot of management operations once they manage to login to 
the system after a great period of inactivity. 

A configuration interface upon account creation will 
collect user preferences on how and when the user should be 
notified on password policy related actions. The interface 
must offer at least notification options within the range from 
“every login” to “never” in sensible time increments. When 
time to notify is reached, there must be alternative contact 
methods; except from the user interface –which might be the 
worst option-, users can be notified through SMS messages, 
instant messaging, and email messages. Users are actually 
accustomed to such out-of-bounds communications from real 
world applications. For example, consider the case of 
changing credit cards upon expiration. Users can accept such 
a method, feel that the system offers increased security, and 
do not interrupt their regular browsing experience. 

As time goes by and the password expiration date is 
reached, the “password change” operation should be 
gradually moved in the front of the user instead of staying 
buried in some obscure option. To an extreme, the password 
change link should appear under specific circumstances as an 
intermediate page just after the user enters the system (and 
not when the user is presented with the actual application 
interface and calls for action). 

A final step is the “password reset” operation, which is 
nowadays usually implemented through answering a “secret 
question”. There are two points to improve in relation to this 
task. The first point is that it must be clearly communicated 
to the users that the security question does not protect them 
from people they know but from strangers. So the users must 
be aware that their “secret” answer is more valuable and 
more critical than their password. If someone close to them 
knows the secret answer, then their account and data can be 
exposed. From a system point of view this is usually not 
considered a real threat for the system. However, from a user 
point of view, this threat can be real and the involved risk 
much greater. 

The second point is to improve the “Remind my 
password” cycle when a security question is not involved. 
Current practice is to use an alternative email for 
communication. From a security point of view, this can 
create more problems; the alternative email address might 
not anymore be in the possession of the user or the message 

might be erroneously filtered in intermediate mail servers as 
spam. In addition, these messages are sent without some 
form of encryption, so any intermediary can read and act on 
them. It would be preferable, from a user point of view to a) 
explore alternative verification means, like sending a new 
password through SMS and b) periodically verify users’ 
addresses in order to keep the users notified and the 
addresses up-to-date. We further claim that once the users 
are accustomed to a password change habit for their benefit 
(and not enforced to), this “remind my password” option 
shall be used less. 

Overall, a user-centric approach to password 
management seems more attractive and capable to solving 
current problems users face on selecting and using a good 
password. The design described above focuses on user needs 
and aims and not on system policies and thus, it is expected 
to be more acceptable by the users themselves.  

VI. CONCLUSIONS 
In this paper we examined the contradicting requirements 

that developers face when designing for “usable security”. In 
particular, we analyzed the four main areas of research in the 
field i.e., password management, usability of security 
applications, secure interface design, and CAPTCHA 
protection. In this context, we identified “usable security” as 
a significant crossroads priority problem and argued that 
security must be engineered with priority for the user and not 
the system. Our proposal is to apply a user-centric approach 
for designing “usable security” and we demonstrated how it 
can be applied on the “password change” problem by 
streamlining the operation in the day-to-day use of a web 
application. 

This work lays the foundations of a new approach on 
designing for “usable security”, which needs to be further 
explored and validated. One interesting direction is to design 
and incorporate the password change mechanism on classical 
web-based applications and evaluate through user studies 
their usability. Another direction is to validate the 
applicability of the user-centric design on the other three 
identified areas. Further user studies can lead to refinement 
and improvement of our proposal on the password change 
problem and other typical security related scenarios. 

REFERENCES 
 

[1] S. Williams, Free as in Freedom: Richard Stallman’s 
Crusade for Free Software. O’Reilly & Associates, Inc., 
Sebastopol, CA, 2002, pp. 52–54. 

[2] A. Adams and M. A. Sasse, “Users are not the enemy: Why 
users compromise security mechanisms and how to take 
remedial measures,” Communications of the ACM  42(12), pp. 
40-46, December 1999. 

[3] A. Whitten and J. D. Tygar, “Why Johnny can’t encrypt: A 
usability evaluation of PGP 5.0,”, In Proceedings of the Eight 
USENIX Security Symposium (Security’99), Washington DC, 
USA, 23-26 August 1999, pp. 169-183. 

[4] Computing Research Association, “Four Grand Challenged in 
Trustworthy Computing” final report of CRA Conference on 
Grand Challenged in Information Security and Assurance, 
Airlie House, Warrenton, Virginia, November 16-19, 2003. 

116



Available: 
http://archive.cra.org/reports/trustworthy.computing.pdf 

[5] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “Password 
Memorability and Security: Empirical Results,” IEEE 
Security & Privacy, 2004, pp. 25-31. 

[6] S. L. Garfinkel and R. C. Miller, “Johnny 2: A User Test of 
Continuity Management with S/MIME and Outlook Express,” 
Proc. Symp. Usable Privacy and Security, ACM Press, 2005, 
pp. 13-24. 

[7] S. E. Schecter, R. Dhamija, A. Ozment, and I. Fischer, “The 
Emperor’s New Security Indicators: An evaluation of website 
authentication and the effect of role playing on usability 
studies,” IEEE Symp. on Security and Privacy, Oakland, CA, 
USA, May 20-23, 2007. 

[8] L. Falk, A. Prakash, and K. Borders, “Analyzing Websites for 
User-Visible Security Design Flaws,” Proc. Symp. Usable 
Privacy and Security, ACM Press, 2008, pp.117-126. 

[9] S. Bratus, C. Masone, and S. W. Smith, “Why Do Street-
Smart People Do Stupid Things Online?” IEEE Security & 
Privacy, May/June 2008, pp. 71-74. 

[10] J. Johnston, J. H. P. Eloff, and L. Labuschagne, “Security and 
human computer interfaces,” Computers & Security 22(4), pp. 
675-684, 2003. 

[11] J. Nielsen, “Ten Usability Heuristics” [Online]. Available: 
http://www.useit.com/papers/heuristic/heuristic_list.html 

[12] C. J. Hernandez-Castro and A. Ribagorda, “Pitfalls in 
CAPTCHA design and implementation: The Math 
CAPTCHA, a case study,” Computers & Security 29(2010), 
pp. 141-157, 2010. 

[13] S. Garfinkel and G. Spafford, Practical UNIX and Internet 
Security. O'Reilly & Associates, 1996. 

[14] J. Yan and A. S. El Ahmad, “Usability of CAPTCHAs or 
usability issues in CAPTCHA design,” Proc. Symp. Usable 
Privacy and Security, ACM Press, 2008, pp.44-52. 

[15] S. J. Payne, “Mental Models in Human-Computer 
Interaction”, The Human-Computer Interaction Handbook, 
2nd edition, A. Sears and J.A. Jacko (ed.), pp. 63-76, CRC 
Press, 2008.  

[16] A. Herzog and N. Shahmerdi, “User Help Techniques for 
Usable Security,” Proc. CHIMIT 2007, ACM Press, 
Cambridge, MA, March 30-31, 2007. 

[17] C. Masone and S. Smith, “Towards Usefully Secure Email,” 
IEEE Technology and Society Magazine 26(1), pp. 25-34, 
Spring 2007. 

[18] K.-P. Yee, “User Interaction Design for Secure Systems,” 
Proc. 4th Int’l Conf. Information and Communications 
Security, Springer-Verlag, 2002, pp. 278-290. 

[19] D. A. Norman, The Design of Everyday Things, Basic Books, 
New York, 2002. 

 

117


