
A Modbus/TCP Fuzzer for Testing Internetworked
Industrial Systems

Artemios G. Voyiatzis∗†, Konstantinos Katsigiannis‡, Stavros Koubias‡†
∗ SBA Research, Vienna, Austria

avoyiatzis@sba-research.org
† Industrial Systems Institute/RC ‘Athena’, Patras Science Part building, GR-26504, Platani Patras, Greece

bogart@isi.gr
‡ Department of Electrical and Computer Engineering, University of Patras, GR-26504, Patras, Greece

kkatsigiannis@upatras.gr, koubias@ece.upatras.gr

Abstract—Modbus/TCP is a network protocol for industrial
communications encapsulated in TCP/IP network packets. There
is an increasing need to test existing Modbus protocol implemen-
tations for security vulnerabilities, as devices become accessible
even from the Internet. Fuzz testing can be used to discover
implementation bugs in a fast and economical way.

We present the design and implementation of MTF, a Mod-
bus/TCP Fuzzer. The MTF incorporates a reconnaissance phase
in the testing procedure so as to assist mapping the capabilities of
the tested device and to adjust the attack vectors towards a more
guided and informed testing rather than plain random testing.
The MTF was used to test eight implementations of the Modbus
protocol and revealed bugs and vulnerabilities that crash the
execution, effectively resulting in denial of service attacks using
only a few network packets.

I. INTRODUCTION

An essential activity in software, hardware, and system
development is testing. The products are tested so as to ensure
correct operation or quality in general. There are many forms
of software testing. Static program analysis requires access to
the source or object code of a program and does not actually
executes it. Code review is a form of static analysis performed
by humans.

Penetration testing is an approach that first identifies the
unknown system under test (SUT) and then applies known
or elaborated attack vectors to test the system’s resilience
to simulated attacks. Penetration testing requires access to a
functional system but not to its source code. The expertise
and knowledge needed for penetration testing is not always
available within an organization and thus, it may be necessary
to expose its systems to third parties.

Fuzz testing or “fuzzing” is a method for testing under time
and budget constraints. Fuzzing is “a method for discovering
software faults by providing unexpected input and monitoring
for exceptions” [1]. A recent fuzzing state of the art is provided
in [2]. Fuzzing is a highly-automated testing technique that
requires no access to the source code or the internals of the
system. It can be applied as a first step towards discovering
system’s identity. Fuzzing uses random inputs, may run for
long times, and may be able to test only a few of the possible

SUT states. On the other hand, it is rather inexpensive to apply
in practice, compared to the available alternative methods, and
it can provide initial indications for further examination.

Fuzzers, i.e., software programs for fuzz testing, date back
to 1988 [3]. Fuzzers can be applied in many different scenar-
ios, such as program input parameters (environment variables
and command line arguments), packets (network protocols),
file formats (read by programs as configuration or as input for
processing), application content (web applications, browsers),
and memory contents (in-memory fuzzing). A disadvantage of
implementing fuzzers is that a client must be developed for
each SUT, which is not a portable, re-usable solution. Fuzzing
frameworks can overcome this limitation but once they become
too generic, the implementation time and complexity raises
again.

Embedded systems are commonly found in industrial set-
tings. Such systems cannot run or be attached to software
monitoring applications, such as a memory consumption in-
spectors, due to physical limitations (field installation) and lack
of appropriate tools. Thus, fuzzing frameworks that monitor
system execution must use other means of execution and must
run in separate, independent systems.

Industrial (control) systems comprise many embedded sys-
tems. As industrial systems get interconnected and inter-
networked, they are becoming a very attractive target for
attackers. Such systems have been originally developed with
a mindset of operating in a disconnected environment, where
network connectivity was not a threat. However, these assump-
tions do not hold anymore.

Fuzzing the implementations of industrial network proto-
cols, such as the Modbus protocol, is an important first step
towards getting insights on the resilience of the systems against
new threats arising from the Internet. Such systems are an ideal
fit for fuzz testing: the source code is not available, the systems
were developed years ago, the protocol specifications are open,
different vendors and a variety of protocol implementations
already exist, the system specification may not be available,
and interaction with such systems through network exchanges
is the norm.

In this paper, we describe the architecture and the imple-978-1-4673-7929-8/15/$31.00 c⃝ 2015 IEEE

mentation of a fuzzer for testing implementations of the Mod-
bus network protocol when running over TCP/IP. The fuzzer
operates in phases so as to minimize the produced network
traffic and adapts the fuzz attempts based on the knowledge
it collects about the SUT. We tested the fuzzer against eight
Modbus implementations in software. The fuzzer succeeded
in revealing various deviations from protocol specification,
bugs, and software crashes that resulted in a denial of service
attack from the side of the SUT. This is an important factor
to consider in an industrial setting, as system availability is of
utmost importance.

The rest of this paper is organized as follows. Section II
discusses network protocol fuzzing, the Modbus protocol, and
its security threats at a protocol level. Section III describes the
design and implementation of the Modbus/TCP protocol fuzzer
we developed, while Section IV presents the experiments held
and the performance of our fuzzer. Section V provides the
conclusions drawn and the future directions of the reported
work.

II. LITERATURE REVIEW

A. Network protocol fuzzers

Fuzz testing can be utilized to automatically check an im-
plementation of a network protocol against erroneous (out of
specifications) packets received from the network. Compared
to exhaustive, methodological search, fuzz testing can provide
a faster, albeit randomized, searching for detecting possible
points of failure.

The knowledge initially collected by a fuzzer can be later
utilized, depending on the application scenario, so as to guide
the vulnerability testing towards more “interesting” paths
that are more probable to be vulnerable and need fixing.
Furthermore, fuzz testing can inject network traffic in a way
that cannot be described in rules and thus, its operation may
remain hidden from security monitoring appliances.

Network protocol fuzzers can be classified into many cate-
gories. A first criterion is the availability of source code that
can be analyzed and guide searching. Fuzzing can benefit
security testing of heavyweight and complex network pro-
tocols, as it can identify specific areas of interest for more
focused testing [4]. Symbolic execution is a popular approach
for applying the so-called “whitebox” fuzzing [5], [6], [7], [8].

Knowledge of the packet format (blocks) of a network
protocol can be used to build mutations for testing [9], [10],
[11], [12]. The generation of test packets can be totally
random-based or be based on mutations of known (previously
captured) network packets. The General Purpose Fuzzer (GPF)
is an example of the latter [13].

At a higher level of abstraction, a fuzzer can use the
knowledge of the protocol specification (if this is available)
and build faulty inputs for injecting traffic in the network [14].
Many network protocols are based in the concept of the
“state”, engaging in lengthy data exchanges. Stateful fuzzers
are used to test such implementations at a deeper level of
interaction, including sending valid but out-of-order requests
and responses [15], [16], [17].

Fig. 1. Modbus frame encapsulation in TCP segments

B. The Modbus protocol

Modbus is a serial communication protocol for indus-
trial control systems published by Modicon (now Schneider
Electric) in 1979. It has become the de facto standard for
connecting industrial electronic devices. Since 2004, the devel-
opment and update of the Modbus protocol is managed by the
Modbus Organization (http://www.modbus.org/). Modbus is a
simple and robust protocol, with two roles (master and slave)
and stateless communication of request/response frame pairs.
Modbus frames can be carried over serial links or TCP/IP.

A common application scenario is a Supervisory Control
and Data Acquisition (SCADA) system collecting information
from Remote Terminal Units (RTU), such as Programmable
Logic Controllers (PLC). In this setting, the SCADA acts as a
Modbus master, issuing requests to its slave PLCs that provide
the responses.

The Modbus slave device is modelled as a set of four
memories, namely coils, discrete inputs, holding registers, and
input registers. The control loops and the reporting can be
modeled as a series of reads and writes of these memories,
either from the physical processes themselves or through
remote commands issued by the Modbus master.

In the case of Modbus over TCP/IP, the Modbus slave (e.g.,
a PLC device) acts as a TCP server waiting for incoming
connections at the IANA-assigned port TCP/502, while the
Modbus master (e.g., a SCADA system) acts as a TCP client
connecting to it.

The format of a Modbus frame when transmitted over
TCP/IP is depicted in Fig. 1. The Modbus/TCP Application
Data Unit (ADU) consists of a 7-byte header (Modbus Ap-
plication Header, MBAP) and a Modbus Protocol Data Unit
(PDU) of up to 253 bytes.

The MBAP consists of a 2-byte transaction identifier; a 2-
byte protocol identifier (set to 0x0000 for Modbus); a 2-byte
length field, indicating the number of the following bytes; and
a 1-byte unit identifier (set to 0xFF, equivalent to the slave
address in the serial version of Modbus). In Modbus/TCP a
master may have multiple pending transactions with slaves and
a slave may be communicating with multiple masters.

The Modbus PDU carries requests that are defined in func-
tion codes (FC), ranging from 0 to 127 (defined in the Modbus
standard: 1–64, 73–99, 111–127), while negative responses
range from 128 to 255. Each function code can be followed by
function parameters, passing request parameters to the slave.
For example, a read coil function code is followed by the
address (number) of the specific coil to be read.

C. Problem statement

Modbus is a rather simple protocol and its implementation
should be straightforward. However, past assumptions of a
strict and protected environment in which industrial control
systems operate may be inherently embedded in an imple-
mentation. Earlier attempts to analyze the Modbus protocol
have revealed many areas of concern for operating Modbus
in modern, internetworked environments. The concerns range
from reconnaissance to process integrity and denial of service
attacks [18].

Some earlier works focus on applying fuzz testing in indus-
trial network protocols, either by extending general-purpose
tools (e.g., Sulley for ICCP, DNP3, and Modbus [19]) or
developing new ones from the scratch (e.g., for PROFINET,
IEC61850, DNP3, Modbus, and OPC [20], [21], [22], [23],
[24]). These tools are pure fuzzers, randomly generating or
mutating Modbus traffic and manipulating the protocol fields.
As such, they may inject a flood of packets for achieving a
good coverage and take too long time to execute. The general-
purpose tools abstract most of attack details and thus, require
adaptation to the specifics of the Modbus protocol. Also, they
require access to the SUT so as to detect a crash or violation.

In the following, we describe the Modbus/TCP Fuzzer
(MTF), a fuzz testing software we developed. The MTF
does not need direct access to the SUT but just a network
connection to it. Through the network behavior of the SUT, it
can derive if the SUT has crashed or is no longer reachable.

III. FUZZER DESIGN AND IMPLEMENTATION

The Modbus/TCP Fuzzer (MTF) is a fuzzer that can be
used to test both the master and the slave sides of the proto-
col. Armed with the open specification of the Modbus/TCP
protocol, we aimed for an informed fuzzer that constructs
almost-valid protocol packets (frames) with erroneous inputs.
The MTF first builds a list of possible cases in the form
of Modbus memory map boundaries and supported function
codes. The MTF then uses this collected knowledge so as to
perform a guided fuzzing and reduce the injected frames and
the number of the tests. The MTF aims to minimize generated
traffic and reduce testing time in order to reduce network noise
and remain as stealth as possible.

A. Reconnaissance

A unique characteristic of MTF is that it incorporates a
“reconnaissance” phase. During this phases, the MTF collects
information about the SUT in order to adapt its attack strategy
to match the capabilities of the SUT and inject as little as
possible network traffic. This phase is realized with three
different means. As a first option, the MTF connects to a
target slave system and enumerates supported Modbus function
codes (FCs). This can achieved by sending a Modbus request
with FC=43. Depending on the level of conformance of the
device to the Modbus specification, the slave system must
respond with a device identification banner and with a list
of the FCs it supports. As a second option, the MTF sends
legitimate ADUs to the device. These ADUs are carefully

selected so as not to produce any action to the system (e.g.,
no FCs that involve memory writes are sent). Finally, as a
third option, the MTF can parse a file with captured network
traffic in PCAP format (cf. http://en.wikipedia.org/wiki/pcap/)
and construct the (partial) list of supported functionality based
on the identified protocol exchanges. This file may originate
from the target network and could have been generated by
other means beforehand.

Another mapping performed during the reconnaissance
phase related to dumping the contents of the four Modbus
memory types (coils, discrete inputs, holding registers, and
input registers). The memory mapping of the device can be
performed either passively or actively. In the active mode, the
MTF generates read queries for memory locations so as to
discover the upper and lower boundaries for each of the four
memory types. The MTF assumes that the addresses of each
memory type are allocated in a continuous space and thus, an
exhaustive address-by-address search is not necessary. This
results in faster execution and in reduced network traffic, al-
lowing MTF to remain as stealth as possible. As some devices
may drop the connection upon receiving invalid addresses, the
MTF keeps track of the scanning progress and reopens the
connection, if necessary. The passive mode is activated when
MTF parses passively captured traffic. In this case, the Modbus
request and response packets are processed so as to identify
the approximate memory boundaries for each memory type.

Once the reconnaissance phase concludes, the MTF has an
initial map of the system-under-test (SUT) and its supported
functionality. The findings of the reconnaissance phase, inde-
pendently of the option used, are written in comma-separated
value files (CSV) that are then parsed during the attack phase
that is described in the following. Armed with this knowledge,
the MTF customizes the attack phase so as to match the
capabilities of the SUT. This approach can possibly lead to
deeper execution paths of the software loaded in the SUT,
due to deeper protocol parsing, and thus, reveal hard-to-spot
implementation bugs.

B. Attack

In the “attack” phase, the MTF generates valid requests
or responses and then fuzzes them. In that sense, the MTF
is a generative fuzzer. The fuzzed Modbus packets are then
injected in the network and the reaction of the SUT is recorded
so as to evaluate its robustness to malformed inputs. The
packet modification can occur in the payload, the PDU, the
MBAP, or the PDU and MBAP parts combined. A fifth option
is to perform no fuzzing at all and inject valid packets into
the network.

At first, MTF parses the output file of the reconnaissance
phase and constructs the list of supported FCs. For each
supported FC, a configurable number of packets are prepared.
At each fuzzing iteration of each FC, MTF chooses one type of
attack (e.g., insert random PDU, remove a valid PDU, change
protocol ID field, or request address out of bounds) and records
the response or the lack of it. During the fuzzing process,
it is possible to change the FC to one that is considered

unsupported. This allows to both fuzz test the SUT and
to discover functionality that was not uncovered during the
reconnaissance phase.

We performed an initial analysis of the Modbus protocol
specification and we identified a list of valid protocol interac-
tions and states that can be reached using a misbehaving or
malicious Modbus client so as to drive the receiving end at an
unexpected state in its execution flow. Our hypothesis is that
that processing information for such states will fire a bug in
the software implementation, resulting in a crash, a freeze, or a
security violation (e.g., returning memory contents that should
not be made available to the requester). We then enriched our
list with attacks described already in the published literature.
Our list includes the following attack vectors:

• A master sends reply frames instead of request frames.
• A master sends request frames containing an error code

(i.e., a function code greater than 127).
• A master sends frames with slave address between 248

and 255 (reserved for future use) or a slave responds with
such an address.

• A master sends frames with function code zero (unde-
fined).

• A master sends “write coil” requests with value not equal
to 0x0000 or 0xFF00.

• A slave responds to master broadcast commands. The
Modbus protocol dictates that broadcast frames must go
unanswered.

• A slave swaps role in the middle of a transaction and
starts sending request frames.

• A slave sends reply frames with different address than
the one addressed to.

• Frames are injected with MBAP field not equal to zero.
• Frames are injected with erroneous MBAP length field.
• Frames are injected with MBAP unit identifier field not

equal to 0xFF.
• Frames are injected with more than one ADU per TCP

segment.
• Connection flooding: A master exhausts the connection

pool of the slave device (not a protocol-level attack).
• Transaction flooding: A master or a slave exhausts the

MBAP transaction pool of the other device by changing
the transaction number so as to keep the transactions
pending (denial of service attack).

We do not claim our list to be an exhaustive one - it is
possible that many more attack vectors may exist on a given
implementation of the Modbus protocol. However, we claim
that it is a good starting point of attack vectors that can confuse
a legitimate Modbus protocol implementation operating under
the assumption that the other end remains strictly compliant
to the protocol specification.

C. Failure detection

The MTF records each request and response for further
processing. Two log files, info and error, are created
at each execution. The former is a detailed execution trail
while the latter contains the evaluation of the SUT’s behavior.

Recorded information include: responses outside the Modbus
specification, delayed responses or freeze of communication
(socket timeout, reset, or close; failure in reopening a closed
socket; and failure in opening a new socket at all), valid but
incorrect responses (e.g., getting back 12 coil readings when
asked for only 10 or getting back different memory readings).

The collected information are then evaluated for detecting
failures and security problems. The major concern here is the
possibility of denial of service attacks. This can be identified
in the logs as a TCP socket close, as inability to open a new
socket to the SUT, and as socket timeout errors, which indicate
that the SUT is not responsive.

D. Implementation

The MTF is implemented in the Python programming lan-
guage. The modbus-tk open source Python implementation
of the Modbus protocol (available at http://code.google.com/p/
modbus-tk) and the pymodbus implementation (available at
https://github.com/bashwork/pymodbus) are utilized to gener-
ate valid Modbus/TCP packets and handle the low-level con-
nectivity details between the master and the slave. The Scapy
framework is used for manipulating Modbus/TCP packets in
an informed way [25].

In our experiments (reported in Section IV), the running
time of the reconnaissance phase was under one minute for
almost all of the cases and the active part of it introduced less
than 2,000 Modbus frames.

IV. EXPERIMENTS AND RESULTS

A series of experiments was held in a testbed environment.
We tested the robustness of various available implementations
of Modbus. More specifically, MTF was used to test the
following implementations:

• MOD_RSSIM v8.0.1, a Modbus RTU and TCP/IP simu-
lator (cf. http://www.plcsimulator.org/).

• XmasterSlave v2.2015.2.11, a simulator for Win-
dows supporting Modbus, DNP3, and IEC 60810-5-
101/103/104 (cf. http://xmasterslave.tgscada.com/).

• pymodbus v1.2.0, a Modbus implementation in Python
(cf. https://github.com/bashwork/pymodbus).

• LibModbus v3.0.6, a Modbus library written in C
running on Linux, MacOS X, FreeBSD, QNX, and Win32
(cf. http://libmodbus.org/documentation).

• Mblogic MB Release 25 (MBAsyncServer v2.0.1),
a full platform for industrial automation written in the
Python programming language that supports Modbus (cf.
http://mblogic.sourceforge.net/mbapps/apps.html).

• Modbus Slave/Modbus Poll v6.0.2, a Modbus im-
plementation supporting up to 32 slave devices in Win32
(cf. http://www.modbustools.com/index.asp).

• FieldTalk, a commercial C++ library for Windows
and Linux supporting serial and TCP connectivity
(cf. http://www.modbusdriver.com/). Also, Modpoll and
Diagslave simulator for Windows and Linux that are
based on FieldTalk.

• Communication Protocol Test Harness
v3.17 by Triangle Microworks (TMW), a
Windows application acting as Modbus master
and slave for testing implementations (cf.
http://www.trianglemicroworks.com/products/
testing-and-configuration-tools/test-harness-pages).

A. Results of MTF

The MTF created a denial-of-service (DoS) attack on
MOD_RSSIM and XmasterSlave by opening new sockets
to port TCP/502 and sending fuzzed packets with MBAP
length equal to 1. This resulted in repetitive socket freezes,
up until no more new connections could be handled any-
more. Less than 200 frames and 1 minute of interaction was
needed to reach this stage. Similar results where observed for
pymodbus; the DoS was realized with less than 10 fuzzed
frames.
LibModbus and Mblogic MB handled better the connec-

tivity issues. Yet, their responses were not valid (e.g., wrong
transaction identifiers and responses with out of bounds FCs).
This may be an indication of memory corruption. Modbus
Slave reacted with socket resets and out-of-spec responses
when receiving fuzzed requests with MBAP length equal to
259, 1462, and 65534. On the other hand, the diagnostics tools
based on the FieldTalk library exhibited a stable behavior
and were not affected by the fuzzer.

In all the aforementioned cases, no specific attack vectors
were responsible for generating the socket freeze and consum-
ing the available socket connections up to the point of a denial
of service attack. Rather, it was the whole group of fuzzed
packets that broke up the protocol processing after some time.

The MTF managed to freeze and crash the TMW software
during both the reconnaissance and the attack phase. During
the former, a request with FC=0x2B resulted in no response
and in 100% CPU usage of the machine hosting the software,
effectively creating a denial-of-service attack. The only option
to resume operation was to terminate the process. The same
behavior was observed when sending multiple PDUs in one
TCP frame or when inserting a random PDU. In some cases,
the operating system was able to terminate the TMW process,
resulting in a crash, as depicted in Fig. 2. Since we had no
access to the source code of the executable, we were not able
to further pinpoint the root cause of the freezes and crashes.

B. Fuzzer comparison

We tested two more fuzzers on the same testbed for the
sake of comparing the observed performance of our MTF.
The first one is the General Purpose Fuzzer (GPF) [13].
GPF supports the following modes: PureFuzz (randomly-
sized Modbus frames); MainGPF (buffer overflow attacks by
increasing the size of the packet and logic error attacks by in-
jecting frames with logical errors); and PatternFuzz (mutating
captured frames). The second one is the commercial product
beSTORM v5.3.1 (the trial version we had available allows as
time-limited execution of 30 minutes). Table I summarizes the
performance of the three fuzzers (MTF, GPF, and beSTORM)

Fig. 2. Screenshot of MTF fuzz result on TMW software

in activating bugs in the eight Modbus implementations based
on number of vectors and time needed. We can observe that
the MTF requires at least an order of magnitude less frames
to be injected in the network in order to manage to freeze
the tested Modbus implementations. The only exception to
this rule is the case of FieldTalk, where the MTF did not
result into socket resets, while GPF achieved this after sending
about 30,000 frames.

V. CONCLUSIONS AND FUTURE WORK

The Modbus/TCP protocol is used in industrial systems
that are no more isolated but rather become more and more
interconnected and internetworked. Such systems are an at-
tractive target for attackers. Fuzz testing can quickly and
efficiently test the systems for possible bugs and for revealing
security weaknesses that may lead to denial-of-service attacks.
We designed and implemented MTF, a Modbus/TCP Fuzzer,
that incorporates a reconnaissance phase. The MTF enhances
the fuzzing approach for industrial systems by performing
guided fuzzing. This results in less injected traffic and faster
execution. The MTF has been successful in revealing bugs
in various existing Modbus/TCP implementations or even
software crashes, creating effectively a denial-of-service attack
through malformed network packets.

As a future work, we aim to apply MTF against other
implementations of the Modbus protocol, with emphasis on
commercial devices available in the market. Also, to further
enhance the failure detection capabilities of the MTF and to

TABLE I
FUZZER PERFORMANCE COMPARISON (NUMBER OF FRAMES AND TIME UNTIL CONNECTION FREEZE).

Implementation MTF GPF beSTORM
MOD_RSSIM 200 frames; 1 minute 200 frames; 1 minute 200 frames; 1 minute
pymodbus 10 frames 14,000 frames no freeze
LibModbus invalid responses 20,000 frames invalid responses
XmasterSlave 200 frames; 1 minute 1,000 frames; must restart 90,000 frames; 30 minutes limit
Mblogic MB invalid responses 150,000 frames 80,000 frames
Modbus Slave 600 frames; 9 minutes 9,500 frames; exception code 10 37,000 frames; exception code 10
FieldTalk no freeze 30,000 frames; crash crash
TMW crash 25,000 frames; crash 30 minutes limit; no crash

develop appropriate countermeasures for detecting and isolat-
ing fuzzing activities at the network layer, long before they
can reach vulnerable devices already installed and operating
in the field.

ACKNOWLEDGMENT

This work was partially supported by the GSRT Action
“KRIPIS” of Greece with national and EU funds in the context
of the research project “ISRTDI” and by the COMET K1
program by the Austrian Research Funding Agency (FFG).

REFERENCES

[1] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[2] R. McNally, K. Yiu, D. Grove, and D. Gerhardy, “Fuzzing: The state
of the art,” Defence Science and Technology Organisation, Department
of Defence, Australian Government, Edinburgh, South Australia 51111,
Australia, Tech. Rep. DSTO-TN-1043, February 2012.

[3] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
pp. 32–44, 1990.

[4] D. Zhang, D. Liu, Y. Lei, D. Kung, C. Csallner, N. Nystrom, and
W. Wang, “Simfuzz: Test case similarity directed deep fuzzing,” Journal
of Systems and Software, vol. 85, no. 1, pp. 102–111, 2012.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“Exe: automatically generating inputs of death,” ACM Transactions on
Information and System Security (TISSEC), vol. 12, no. 2, p. 10, 2008.

[6] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
OSDI, vol. 8, 2008, pp. 209–224.

[7] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “Aeg: Automatic
exploit generation.” in NDSS, vol. 11, 2011, pp. 59–66.

[8] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai, H.-L. Lu, and W.-M.
Leong, “Crax: Software crash analysis for automatic exploit generation
by modeling attacks as symbolic continuations,” in Software Security
and Reliability (SERE), 2012 IEEE Sixth International Conference on.
IEEE, 2012, pp. 78–87.

[9] P. Amini, “Sulley: Pure python fully automated and unattended fuzzing
framework.” [Online]. Available: https://github.com/OpenRCE/sulley

[10] “Peach fuzzing platform.” [Online]. Available: http://peachfuzzer.com/

[11] D. Aitel, “An introduction to spike, the fuzzer creation kit,” Presentation
at The BlackHat USA Conference 2002. [Online]. Available: http:
//www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt

[12] M. Vuagnoux, “Autodafé: An act of software torture,” 22nd Chaos
Communications Congress, Berlin, Germany, 2005.

[13] V. Labs, “General purpose fuzzer.” [Online]. Available: www.vdalabs.
com/tools/efsgpf.html

[14] “Protos - security testing of protocol implementations.” [Online].
Available: http//www.ee.oulu.fi/research/ouspg/protos/

[15] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, “Snooze: toward a stateful network protocol fuzzer,” in
Information Security. Springer, 2006, pp. 343–358.

[16] T. Kitagawa, M. Hanaoka, and K. Kono, “Aspfuzz: A state-aware
protocol fuzzer based on application-layer protocols,” in Computers and
Communications (ISCC), 2010 IEEE Symposium on. IEEE, 2010, pp.
202–208.

[17] P. Tsankov, M. T. Dashti, and D. Basin, “Secfuzz: Fuzz-testing security
protocols,” in Automation of Software Test (AST), 2012 7th International
Workshop on. IEEE, 2012, pp. 1–7.

[18] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for
the modbus protocols,” International Journal of Critical Infrastructure
Protection, vol. 1, pp. 37–44, 2008.

[19] G. Devarajan, “Unraveling scada protocols: Using sulley fuzzer,” Pre-
sentation at the DefCon 15 Hacking Conference, 2007.

[20] R. Koch, “Profuzz.” [Online]. Available: https://github.com/HSASec/
ProFuzz

[21] M. Dynamics, “Mu test suite.” [Online]. Available: http://www.
mudynamics.com/products/mu-test-suite.html

[22] B. Security, “bestorm software security testing tool.” [Online].
Available: http://www.beyondsecurity.com/bestorm.html

[23] T. Wang, Q. Xiong, H. Gao, Y. Peng, Z. Dai, and S. Yi, “Design and
implementation of fuzzing technology for opc protocol,” in Intelligent
Information Hiding and Multimedia Signal Processing, 2013 Ninth
International Conference on. IEEE, 2013, pp. 424–428.

[24] X. Qi, P. Yong, Z. Dai, S. Yi, and T. Wang, “Opc-mfuzzer: A novel multi-
layers vulnerability detection tool for opc protocol based on fuzzing
technology,” International Journal of Computer and Communication
Engineering, vol. 3, no. 4, July 2014.

[25] T. H. Kobayashi, A. B. Batista, A. Brito, and P. Motta Pires, “Using
a packet manipulation tool for security analysis of industrial network
protocols,” in Emerging Technologies and Factory Automation, 2007.
ETFA. IEEE Conference on. IEEE, 2007, pp. 744–747.

