
CryptoPalm: A Cryptographic Library for

PalmOS

Georgios C. Alexandridis, Artemios G. Voyiatzis, and Dimitrios N. Serpanos

Department of Electrical and Computer Engineering
University of Patras
GR-26504, Patras

Greece
GAlexandridis@myrealbox.com, bogart@ee.upatras.gr, serpanos@ee.upatras.gr

Abstract. PDAs and other handheld devices are commonly used for
processing private or otherwise secret information. Their increased usage
along with their networking capabilities raises security considerations
for the protection of the sensitive information they contain and their
communications.

We present CryptoPalm, an extensible cryptographic library for the Pal-
mOS. The library integrates a large set of cryptographic algorithms and
is compatible with the IEEE P1363 standard. Furthermore, the library
offers performance comparable with that of independent, application-
centric implementations of the cryptographic algorithms. CryptoPalm is
beneficial for PalmOS software developers, since it provides established
cryptographic algorithms as an infrastructure for meeting their applica-
tions’ security requirements.

1 Introduction

The PalmOS platform is a well-known and wide-spread PDA platform. It has
been used by PalmOne (formerly Palm Inc.), Sony, and Handspring for PDAs of
varying capabilities. PalmOS dominated the market of PDAs, reaching a world-
wide penetration of 68% by 1999. Nowadays, the PalmOS operating system is
incorporated in smartphones i.e., mobile phones with PDA capabilities.

The increasing use of PDAs for processing private information and for se-
curely accessing enterprise information drives the need for support of crypto-
graphic operations in them. Furthermore, PDAs are complete computing sys-
tems that can interface with larger systems through communication ports like
infrared ports, modems, and wireless network cards. Combined with their “per-
sonal” character, PDAs can be an attractive means for two-factor authentication
methods.

Given the large installation base of PalmOS-based devices and the numer-
ous applications, it is desirable to have a cryptographic library that incorpo-
rates most common operations, like public and secret-key algorithms and cryp-
tographic hashing functions.



In this paper, we introduce CryptoPalm, an extensible library of crypto-
graphic operations for the PalmOS. The library incorporates some unique char-
acteristics. At first, it implements all the aforementioned algorithm families un-
der a common programming interface, allowing a developer to choose the best
algorithm for his needs from a set of available ones. At second, it offers com-
patibility with the IEEE P1363 standard for public-key cryptography, ensuring
the correctness and validity of the implementation [1]. At third, it provides an
extensible platform, where more algorithms can be incorporated, under the same
programming interface, if needed. At fourth, it achieves comparable performance
with that of independent implementations of specific algorithms. Finally, the li-
brary is compatible with all PalmOS versions, from 3.0 up to 6.0.

The paper is organized as follows. Section 2 provides a short presentation
of the PalmOS platform and a review of previous attempts of cryptography
implementation on the PalmOS platform. Section 3 provides an analysis of the
implementation of the CryptoPalm library and the performance optimizations
we incorporated, while Section 4 provides a comparison between the CryptoPalm
library and independent implementations of specific algorithms. Finally, Section
5, presents the conclusions and the directions of this work.

2 Cryptography in the PalmOS

Palm PDAs are small-factor, battery-operated devices, in the size of a wallet.
They offer functionalities such as calendaring, todo lists, and addressbook. The
first generation of PDAs are based on the Motorola M68000 processor family,
operate at 16 and later 33 MHz and have 512KB–32MB of memory. The word
size is 16 bit, stored in big-endian form. They do not have a hard disk or a
file system and communicate with a personal computer for data synchronization
through a serial port. The second generation of Palm PDAs are based on the
ARM 4T processor family, operating in much higher frequencies. The word size
is now 32 bit, stored in little-endian form.

Palm PDAs run PalmOS, an operating system with a pre-emptive mutlitask-
ing kernel. The user applications run, until PalmOS 6, as a single task and thus,
no more than one user applications can run concurrently. PDAs based on the
PalmOS enjoyed high market penetration. The manufacturer provides all neces-
sary programming tools to third parties for developing new applications on top
of the operating system. By the end of 2002, more than 20 million PalmOS-based
devices have been sold and more than 10,000 third-party applications have been
developed.

Among these applications, there have been attempts to implement various
cryptographic algorithms for the PalmOS. The cryptographic algorithms are
used for encrypting private information stored in the device and for supporting
the SSH protocol over TCP/IP connections. The latter was based on pilotSSL,
an attempt to port the SSLeay library to the PalmOS [2],[3]. Both SSLeay and
pilotSSL have ceased development for quite some years now; the pilotSSL is far
from a complete cryptographic library. Daswani and Boneh experimented on the



capability of the Palm devices for supporting secure electronic transactions [4].
They conclude that there are some functions, like RSA key generation, that are
not feasible to run on PalmOS and support the view that cryptography in such
environments should be based on elliptic curve cryptography. To support this
view, they provide comparisons between the pilotSSL library and a commercial
SDK for elliptic curve cryptography. Lately, Copera Inc. has introduced AESLib,
a high-performance implementation of the AES algorithm for the PalmOS [5].

Previous attempts to implement cryptography on the PalmOS can be char-
acterized as application-centric. The cryptographic algorithms are built as part
of larger applications and their maintainance is tight to that of the applica-
tion. Furthermore, algorithms implemented in an application cannot be reused
by another application. It is our view that cryptographic operations are a re-
quirement for the majority of applications handling sensitive, private data on a
PalmOS-based device and thus, they should be implemented as a library acces-
sible from all applications. Thus, all applications can benefit from the existence
of a correctly-implemented and high-performance library. PalmOS 5 headed for
this option by providing a “Cryptography Provider Manager” in the operating
system. However, currently it supports only two algorithms, namely RC4 for
encryption and SHA-1 for hashing. In the next sections we present CryptoPalm,
an attempt to provide a unified cryptographic library supporting all the popular
algorithms under a common API for the PalmOS.

3 The CryptoPalm Library

The CryptoPalm is a complete cryptographic library for the PalmOS operat-
ing system. The CryptoPalm library provides implementations for the following
algorithms:

– RSA public key algorithm. The implementation is compatible with the IEEE
P1363 standard.

– symmetric key algorithms: DES, and two implementations of AES.
– ECC algorithms: ECDSA, compatible with the IEEE 1363 standard and

supporting operations over primary and binary fields (GF (p) and GF (2m)).
– Hashing algorithms: SHA-1 and MD5.

The CryptoPalm cryptographic library is based on the MIRACL big number
library 1. The MIRACL library is a collection of optimized routines for handling
multi-precision arithmetic, with emphasis on cryptographic operations.

The selection of the MIRACL library was driven by the fact that it offers a
well-tested set of cryptographic operations and all the necessary primitives for
implementing new algorithms. Furthermore, MIRACL has the following advan-
tages for the PalmOS platform:

– There are no available general-purpose cryptographic libraries for the Pal-
mOS. The available port of the SSLeay library to the PalmOS has ceased

1 MIRACL library is available from http://indigo.ie/~mscott/.



development for some years now and the port was made for supporting spe-
cific operations.

– MIRACL is known to be one of the top high-performance libraries for cryp-
tographic operations [6].

– The library is developed with portability in mind, which was expected to
ease the port to the PalmOS platform.

– The library supports both big and little endian architectures, which is a
desirable feature, given that the Motorola M68000 processor family follows
a big endian architecture.

The development of CryptoPalm library consisted of the following steps: i.

Porting the MIRACL library to the PalmOS environment, ii. Implementation of
public key algorithms compatible with the IEEE P1363 standard, iii. Integration
of symmetric-key and hashing algorithms, iv. Implementation of algorithmic
optimizations, and v. Development of a static and a shared library for use by
other programs.

3.1 Port of the MIRACL library to PalmOS

The MIRACL library provides the necessary support for big number arithmetic.
It has been actively developed since 1988 and currently version 4.85 is available.
The library is available in source code and executable forms for various processors
and is free for academic and non-profit use. The library is characterized by its
compactness, portability, and efficiency. Various processor families are supported
and optimizations in the form of assembly code are provided for specific families.

The Motorola M68000 processor family is not currently supported, so the
first step was to port the MIRACL library to this processor family. The first
step of porting the library to a new environment is to correctly structure the
MIRACL Definitions header file mirdef.h. The required changes for supporting
the PalmOS environment were:

– Define a word size of 16 bits and big-endian storage.
– Disable support for optimized assembly code, since no assembly code is avail-

able for the M68000 processor.
– Disable support for standard I/O and file I/O, since the PalmOS platform

neither has standardized input/output functions, e.g. ANSI C printf() and
scanf(), nor a file system.

There are some points that must be taken into account when creating a li-
brary in the PalmOS environment. A first point is to decide if the library is
built as a static or dynamic one. A static library introduces less overhead and
the linker, if it supports it, can integrate into the application only the func-
tions of the library that are called. This results to smaller programs. However,
if the library code is updated, all programs that are linked with the previous
version of the library must be upgraded too, in order to incorporate the neces-
sary updates. Dynamic libraries can be built and installed only once in a Palm
device. Programs that use the library have the extra overhead of opening the



library and calling the necessary functions. The advantages of dynamic libraries
are the maintainability and the fact that programs can break the 64 KB barrier
(dynamic libraries can be 64 KB each).

Another point of attention is the code model, which specifies the type of
jumps within the code. There are three approaches to this option: use absolute
addresses for calling functions (large model), use only small addressing (small
model) and use a mixed model of absolute and relative addresses (smart model).
The second approach results in faster code, since it introduces minimum overhead
(one jump instruction). However, code jumps must not exceed 32 KB forward or
backward (as the jump instruction takes a 16 bit offset value as a parameter).
Therefore, a careful link order must be defined for the use of the small model
without hitting the jump limit.

The previous work allowed the creation of a static library version of Cryp-
toPalm. The static library comes as a standalone file, PalmMir.lib, that contains
all the necessary functionality for implementing cryptographic computations. It
can be integrated with third-party code. We also developed a shared library
version of CryptoPalm, in order to further assist developers of cryptographic
software. Since PalmOS shared libraries must not exceed the 64 KB limit, Cryp-
toPalm is composed of four smaller libraries; one for algebraic operations (includ-
ing the P1363 RSA Implementation), one for elliptic curve operations (including
the P1363 ECDSA Implementation), one containing the symmetric ciphers (DES
and AES) and the hash functions (SHA-1 and MD5), and one containing Brian
Gladman’s AES Code. All four PRC files can be transferred to the the PDA
during a HotSync operation and can be manipulated like any other Palm OS
Shared library.

3.2 Public-key algorithms

The implementation of public key algorithms has been standardized in the IEEE
P1363 standard [1]. The standard defines all the necessary steps for implement-
ing a public-key algorithm, from the generation and validation of keys, to the
encryption, decryption, signing, and signature verification functions. The MIR-
ACL library provides “wrapper” functions for implementing only the public-key
cryptography primitives.

We independently implemented a large set of IEEE P1363 functionality, sup-
porting all cryptographic operations for both RSA (IFEP-RSA, IFDP-RSA) and
Elliptic Curves (ECSP-DSA, ECVP-DSA). The implementation was validated
for conformance with the standard, using the provided test vectors and checking
for correct output.

3.3 Secret-key and hashing algorithms

The symmetric-key algorithms implemented in the CryptoPalm library are DES
and two versions of AES. The MIRACL library contains only an implementation
of AES. As to support DES, we ported Eric Young’s software DES implemen-
tation. This implementation is considered the fastest one in software currently



freely available [6]. We also ported to the CryptoPalm library Brian Gladman’s
implementation, which is considered the most optimized software implementa-
tion of AES [7].

CryptoPalm provides the MD5 and SHA-1 hashing algorithms [8, 9]. We
ported to the PalmOS the reference implementation of MD5 provided in [8].
The SHA-1 implementation is contained in the MIRACL library.

Initial performance measurements suggested that the public-key algorithms
did not achieve comparable performance with the ones provided in the litera-
ture. We further examined the implementations in order to seek for areas of
improvements.

3.4 RSA Optimizations

Profiling the RSA implementation revealed that the computation of the modular
exponentiation operation xy (mod n) was the dominant one in time, accounting
for over 99.5% of the time. Careful inspection of execution traces revealed four
areas of algorithmic optimization [10]:

– Usage of the Chinese Remainder Theorem (CRT).
– Improving the exponentiation computation.
– Improving the modular multiplication computation.
– Improving the multiplication operation.

Usage of the CRT theoretically contributes an improvement by a factor of
four. A comparison of methods for exponentiation verified that MIRACL is al-
ready using the best available method, that is of an adaptive sliding window
of 5 bits. The modular multiplication method used in MIRACL, the Mont-
gomery reduction, is almost optimal, since it is 2.5% slower than the table
lookup method [10]. We opted for Montgomery reduction, since it requires less
space and allows for the next optimization. The multiplication operation can be
enhanced by combining the Karatsuba-Ofman multiplication method with the
Montgomery reduction for the modular multiplication. The combination of the
two methods offers an asymptotic improvement from O(n2) to O(n1.58), where
n is the number of binary digits of the modulo.

In summary, CryptoPalm contains an optimized RSA implementation using
the Chinese Remainder Theorem, an adaptive sliding window exponentiation
of 5 bits and the combination of Montgomery reduction and Karatsuba-Ofman
method for the modular multiplication operation. CryptoPalm with this setup
achieved an significant improvement by a factor of 5 compared to the default
implementation.

3.5 Elliptic Curve optimizations

Profiling the Elliptic Curve Cryptography implementation revealed that the com-
putation of the scalar product of a number with a point of a curve was the most
time consuming task, accounting for over 98% of the time. The scalar multipli-
cation can be improved in four areas:



– Improving the multiplication algorithm.
– Improving the doubling and addition operation.
– Improving the modular multiplication algorithm.
– Improving the multiplication method.

The analysis of the profiling revealed that the computations could be im-
proved by using the Brickell method [11]. This applies to both primary and
binary fields. The improvement is almost halving the required time for the com-
putation. Furthermore, for computations over prime fields, it is possible to use
the combined Karatsuba-Ofman multiplication method and the Montgomery re-
duction method as before, along with the Brickell method. All combined, we
achieved an improvement by an order of magnitude for the computations over a
prime field.

4 Performance analysis

In this section we present performance diagrams for the algorithms supported by
CryptoPalm. All performance measurements were taken in the PalmOS Profiler,
a special version of the PalmOS Emulator (POSE) [12]. The Profiler provides
detailed timing analysis of application execution with high accuracy. For shake
of comparison with other works, we provide diagrams of the performance on the
Motorola Dragonball 16 MHz processor. We note that we took measurements
for other processors too (Dragonball EZ 20 MHz, VZ 20 MHz, VZ 33 MHz),
and on a real device (Handspring Visor Pro having a Motoral Dragonball VZ 33
MHz processor). All measurements indicate that cryptographic operations are
processing-bounded (performance improves linearly with the speed of processor).
Furthermore, performance on the POSE and the real device are identical, fur-
ther supporting the confidence on the POSE measurements. All measurements
presented are the weighted average of 100 experiments.

Table 1 provides a comparison between the CryptoPalm optimized RSA im-
plementation and the one provided by the pilotSSLeay for encryption and de-
cryption. The two implementations provide almost identical performance; for
decryption pilotSSLeay is slighty better, for encryption CryptoPalm is slightly
better. This is rather encouraging, since pilotSSLeay implements the time-critical
functions in assembly code, while CryptoPalm does not.

Table 1. RSA (n=512, e=17) performance on DragonBall 16 MHz

pilotSSLeay CryptoPalm

Decryption 7028 ms 7343 ms
Encryption 1376 ms 1338 ms

Table 2 provides a comparison between the CryptoPalm optimized ECC im-
plementation and the Certicom Security Builder SDK 2.1 for PalmOS, as re-
ported in [4]. Clearly, the commercial product is achieving better performance



(4–5 times faster). This is an area of improvement for the CryptoPalm library.
We should note however that the commercial product contains highly-optimized
code in assembly language, while CryptoPalm is written entirely in ANSI C.

Table 2. ECC (160/163 bit) performance on DragonBall 16 MHz

pilotSSLeay CryptoPalm

Key generation 597 ms 3465 ms
Signature generation 776 ms 3684 ms
Signature verification 2448 ms 10084 ms

Table 3 provides a comparison between DES and AES of CryptoPalm. The
AES algorithm is considered more secure than the DES algorithm; the results
indicate that it is also provides higher performance, so there is no practical
reason to prefer DES rather AES.

Table 3. DES and AES performance (bytes/sec)

DES AES 128 AES 192 AES 256

Dragonball 16 MHz 4343 7547 6501 5710
Dragonball EZ 16 MHz 4343 7547 6501 5710
Dragonball EZ 20 MHz 5305 9217 7940 6975
Dragonball VZ 33 MHz 8705 15123 13019 11429

Table 4 provides a comparison between three AES implementations: the one
contained in MIRACL and ported to PalmOS, Brian Gladman’s ANSI C code
ported in the CryptoPalm library, and AESLib, a commercial product using also
Gladman’s code along with assembly language optimizations. We note that the
performance for AESLib is taken by the manufacturer, so actual performance
may slightly differ from the one reported. In any case, our port and AESLib offer
comparable performance.

Table 4. AES 128 encryption performance on DragonBall 16 MHz (bytes/sec)

MIRACL Gladman AESLib

Encryption 7733 8316 10296

Table 5 provides a comparison for various input sizes for the performance
of the SHA-1 and the MD5 algorithms, as implemented in CryptoPalm. The
authors are not aware of other implementations of the two algorithms for the



PalmOS in order to make a comparison. From the table, it is clear that there
is a logarithmic relationship between input size and time to complete a hash
operation. We also note that for input sizes smaller than 256 bits the performance
is the same in both cases, due to padding (the input is padded to 256 bits and
then hashed). Furthermore, it is clear that MD5 is about four times faster than
SHA-1.

Table 5. SHA-1 and MD5 performance (time, in milliseconds)

Input size (bits) 160 256 512 1024 2048 4096

SHA-1, DragonBall 16 MHz 9223 9210 16991 24737 40229 71212
SHA-1, DragonBall VZ 33 MHz 4605 4598 8483 12350 20085 28749
MD5, DragonBall 16 MHz 2843 2843 4722 6468 9944 16894
MD5, DragonBall VZ 33 MHz 1423 1423 2367 3233 4963 8424

5 Discussion and Future Work

We have presented CryptoPalm, a high-performance cryptographic library for
the PalmOS platform. The library is compatible with the IEEE P1363 stan-
dard, a unique characteristic for the specific platform that further raises the
confidence for the correctness of the implementation. The library achieves high-
performance on the platform; the performance of the algorithms is comparable
with other works that focus exclusively on a specific algorithm or family of them.
Furthermore, CryptoPalm offers a unified API for accessing all algorithms, which
is a highly desirable feature and incorporates a set of algorithms for each funda-
mental operation. Thus, it allows the developer to choose the algorithm that best
matches his needs, without requiring to learn and install another library. Cryp-
toPalm remains an extensible platform, where new cryptographic algorithms can
be added.

There are some areas of improvement for the library that we plan to work
in the future. One direction is the inclusion of more cryptographic algorithms
in the library. Another direction is the further optimization of the code, by im-
plementing computational-intensive parts in assembly language, where possible.
Finally, it is desirable to further port natively the library on the PalmOS 5
and 6 platform. The library now can run as-is on these platforms through the
PACE compatibility layer provided by the newer versions of the operating sys-
tem. However, this layer introduces some unavoidable overhead that we would
like to overcome. Newer versions of the operating system include a limited cryp-
tographic library by incorporating licensed technology from other companies.
It would be interesting to compare the performance of CryptoPalm and the li-
censed libraries in the new operating systems. Furthermore, newer versions of
the PalmOS operating system are not supported by the emulator and the pro-



filer, thus it is necessary to develop a new testbed environment and methodology
for performance measurements on this platform.

References

1. IEEE: The IEEE P1363 Working Group. (http://grouper.ieee.org/groups/
1363/. Available, April 25, 2005)

2. Goldberg, I.: pilotSSLeay-2.01. (http://www.isaac.cs.berkeley.edu/pilot/.
Available, December 20, 2005)

3. Hudson, T., Young, E.: SSLeay. (http://www2.psy.uq.edu.au/∼ftp/Crypto/.
Available, December 20, 2005)

4. Daswani, N., Boneh, D.: Experimenting with Electronic Commerce on the PalmPi-
lot. In: Proceedings of Financial Cryptography ’99. Volume 1648 of Lecture Notes
in Computer Science., Springer-Verlag (1999) 1–16

5. Copera Inc.: AESLib for Palm OS. (http://www.copera.com/AESLib/. Available,
December 20, 2005)

6. Dai, W.: Speed comparison of popular crypto algorithms. (http://www.eskimo.
com/∼weidai/benchmarks.html. Available, December 2, 2004)

7. Gladman, B.: AES Implementation. (http://fp.gladman.plus.com/AES/. Avail-
able, April 25, 2005)

8. Rivest, R.: The MD-5 Message-Digest algorithm. (IETF RFC 1321)
9. Federal Information Processing Standards Publication 180-2: Secure Hash Stan-

dard (SHA). FIPS PUB 180-2 (2002)
10. Koc, C.: High-Speed RSA Implementation. RSA Laboratories (1994)
11. Brickell, E., Gordon, D., McCurley, K., Wilson, D.: Fast exponentiation with

precomputation: Algorithms and lower bounds. In: Advances in Cryptology: Eu-
rocrypt ’92. Volume 658 of Lecture Notes in Computer Science., Springer-verlag
(1992) 200–207

12. Palm Inc.: Palm OS Emulator (POSE). (http://www.palmos.com/dev/tools/
emulator/. Available, December 20, 2005)


